Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-37259425

ABSTRACT

In the presented study, eight novel Meldrum's acid derivatives containing various vanillic groups were synthesized. Vanillidene Meldrum's acid compounds were tested against different cancer cell lines and microbes. Out of nine, three showed very good biological activity against E. coli, and HeLa and A549 cell lines. It is shown that the O-alkyl substituted derivatives possessed better antimicrobial and anticancer activities in comparison with the O-acyl ones. The decyl substituted molecule (3i) has the highest activity against E. coli (MIC = 12.4 µM) and cancer cell lines (HeLa, A549, and LS174 = 15.7, 21.8, and 30.5 µM, respectively). The selectivity index of 3i is 4.8 (HeLa). The molecular docking study indicates that compound 3i showed good binding affinity to DNA, E. coli Gyrase B, and topoisomerase II beta. The covalent docking showed that 3i was a Michael acceptor for the nucleophiles Lys and Ser. The best Eb was noted for the topoisomerase II beta-LYS482-3i cluster.

2.
Med Chem ; 19(7): 669-685, 2023.
Article in English | MEDLINE | ID: mdl-36635904

ABSTRACT

BACKGROUND: Chalcones are precursors of flavonoids and exhibit a broad spectrum of pharmacological activity. OBJECTIVE: As anti-inflammatory agents, two series of chalcone derivatives and chalcone-based oximes were synthesized and characterized. To integrate the tetramethylpyrazine moiety into these novel molecules, the multifunctional natural chemical ligustrazine was employed. METHODS: A variety of newly synthesized ligustrazine-based chalcones were utilized as precursors for the synthesis of new oximes and their inhibitory activity against COX-1, COX-2, and LOX-5 enzymes were compared. RESULTS: The conversion of ketones to their oxime derivatives increased the effectiveness of COX-1 and COX-2 inhibition. Due to the substituted ether groups, oxime derivative 5d had the lowest IC50 values of 0.027 ± 0.004 µM and 0.150 ± 0.027 µM for COX-1 and COX-2 isoenzymes, respectively. Notably, the oxime derivative's highest effectiveness is conferred by the presence of methoxymethoxy or hydroxy groups at the C-3 and C-4 positions on the phenyl ring. The 6b derivative with a long alkyl chain ether group was shown to be the most powerful 5-LOX inhibitor. All compounds were also assessed for their ability to inhibit nitric oxide generation and LPS-induced IL-6, IL-1ß, and TNF-α production in RAW 264.7 macrophages. Finally, in order to determine the structural effects responsible for the binding mechanism of compounds, they were docked into the binding sites of COX-1, COX-2, and 5-LOX, which revealed an inhibitory mechanism of action and demonstrated the relevance of various types of interactions. CONCLUSION: The findings showed that these novel compounds had a significant impact on antiinflammatory actions.


Subject(s)
Chalcone , Chalcones , Chalcone/pharmacology , Chalcones/pharmacology , Chalcones/chemistry , Cyclooxygenase 2/metabolism , Structure-Activity Relationship , Anti-Inflammatory Agents/pharmacology , Oximes
SELECTION OF CITATIONS
SEARCH DETAIL
...