Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chembiochem ; : e202400417, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38923227

ABSTRACT

MicroRNAs (miRNAs) regulate gene expression through RNA interference. Consequently, miRNA inhibitors, such as anti-miRNA oligonucleotides (AMOs), have attracted attention for treating miRNA overexpression. To achieve efficient inhibition, we developed 2-amino-6-vinylpurine (AVP) nucleosides that form covalent bonds with uridine counterparts in RNA. We demonstrated that mRNA cross-linked with AVP-conjugated antisense oligonucleotides with AVP were protected from gene silencing by exogenous miRNA. However, endogenous miRNA function could not be inhibited in cells, probably because of slow cross-linking kinetics. We recently developed ADpVP, an AVP derivative bearing a 7-propynyl group-which boasts faster reaction rate than the original AVP. Here, we synthesized dADpVP-a deoxy analog of ADpVP-through a simplified synthesis protocol. Evaluation of the cross-linking reaction revealed that the reaction kinetics of dADpVP were comparable to those of ADpVP. In addition, structural analysis of the cross-linked adduct discovered N3 linkage against uridine. Incorporating dADpVP into two types of miRNA inhibitors revealed a marginal impact on AMO efficacy yet improved the performance of target site blockers. These results indicate the potential of cross-linking nucleosides for indirect miRNA function inhibition.

2.
Org Biomol Chem ; 20(23): 4699-4708, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35622064

ABSTRACT

The interstrand crosslinking and threaded structures of nucleic acids have high potential in oligonucleotide therapeutics, chemical biology, and nanotechnology. For example, properly designed crosslinking structures provide high activity and nuclease resistance for anti-miRNAs. The noncovalent labeling and modification by the threaded structures are useful as new chemical biology tools. Photoreversible crosslinking creates smart materials, such as reversible photoresponsive gels and DNA origami objects. This review introduces the creation of interstrand crosslinking and threaded structures, such as catenanes and rotaxanes, based on hybridization-specific chemical reactions and their functions and perspectives.


Subject(s)
Nucleic Acids , Rotaxanes , DNA/chemistry , Nanotechnology , Nucleic Acid Conformation , Nucleic Acid Hybridization , Rotaxanes/chemistry
3.
Curr Protoc ; 2(3): e386, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35316581

ABSTRACT

Crosslinking reactions to nucleic acids are an effective way to prepare stable complexes formed by covalent bonding. We demonstrated that fully 2'-O-methylated (2'-OMe) RNAs having a 2-amino-6-vinylpurine (AVP) exhibited an efficient crosslinking to uracil in the target RNA. Recently, we reported the preparation of crosslinked 2'-OMe RNA duplexes using AVP and the anti-miRNA oligonucleotides (AMOs) containing crosslinked duplexes at the terminal positions. These AMOs exhibited efficient microRNA (miRNA) inhibition at very low concentrations. In this article, we describe the chemical synthesis of 2'-OMe oligonucleotides containing AVP and preparation of the AMOs bearing crosslinked 2'-OMe RNA duplexes using AVP. In addition, we describe in detail the miRNA inhibition assay using these AMOs. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of phosphoramidite of 2-amino-6-vinylguanosine derivative Basic Protocol 2: Synthesis of AVP-2'-OMe RNA Basic Protocol 3: Evaluation of the crosslink reactivity of CFO containing AVP to the 2'-OMe RNA and preparation of AMOs containing crosslinked duplex Basic Protocol 4: miRNA inhibition assays.


Subject(s)
MicroRNAs , Oligonucleotides/chemistry , Purines/chemistry , Vinyl Compounds/chemistry
4.
J Org Chem ; 87(5): 2267-2276, 2022 03 04.
Article in English | MEDLINE | ID: mdl-34978198

ABSTRACT

Specific chemical reactions by enzymes acting on a nucleobase are realized by flipping the target base out of the helix. Similarly, artificial oligodeoxynucleotides (ODNs) can also induce the base flipping and a specific chemical reaction. We now report an easily prepared and unique structure-providing photo-cross-linking reaction by taking advantage of the base-flipping-out field formed by alkene-type base-flipping-inducing artificial bases. Two 3-arylethenyl-5-methyl-2-pyridone nucleosides with the Ph or An group were synthesized and incorporated into the ODNs. We found that the two Ph derivatives provided the cross-linked product in a high yield only by a 10 s photoirradiation when their alkenes overlap each other in the duplex DNA. The highly efficient reaction enabled forming a cross-linked product even when using the duplex with a low Tm value.


Subject(s)
Alkenes , DNA , Nucleic Acid Conformation , Nucleosides , Oligodeoxyribonucleotides
5.
Bioorg Med Chem Lett ; 48: 128257, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34246752

ABSTRACT

The interstrand crosslinking of nucleic acids is one of the strategies to create the stable complex between an oligonucleotide and RNA by covalent bond formation. We previously reported that fully 2'-O-methylated (2'-OMe) RNAs having the 2-amino-6-vinylpurine (AVP) exhibited an efficient crosslinking to uracil in the target RNA. In this study, we established a chemical method to efficiently synthesize the crosslinked 2'-OMe RNA duplexes using AVP and prepared the anti-miRNA oligonucleotides (AMOs) containing the antisense targeting miR-21 and crosslinked duplex at the terminal sequences. These AMOs showed a markedly higher anti miRNA activity than that of the commercially-available miR-21 inhibitor which has locked nucleic acid (LNA) residues.


Subject(s)
MicroRNAs/antagonists & inhibitors , RNA/pharmacology , Dose-Response Relationship, Drug , Humans , Methylation , MicroRNAs/metabolism , Nucleic Acid Conformation , Oligonucleotides/chemistry , Oligonucleotides/pharmacology , Purines/chemistry , Purines/pharmacology , RNA/chemical synthesis , RNA/chemistry , Structure-Activity Relationship , Vinyl Compounds/chemistry , Vinyl Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...