Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Int J Pharm ; 655: 123997, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38484861

ABSTRACT

The superior flexibility, efficient drug loading, high surface-to-volume ratio, ease of formulation, and cost-controlled production are considered exceptional advantages of nanofibers (NFs) as a smart delivery system. Deflazacort (DEF) is an anti-inflammatory and immunosuppressant agent. It is categorized as a poorly soluble class II drug. In this study, DEF-loaded polymeric nanofibrous using the electrospinning technique mats, Polyvinyl pyrrolidone (PVP) with or without Poloxamer 188 (PX) were used as mat-forming polymers. Microscopical imaging, drug content (%), and in vitro dissolution studies were conducted for all NFs formulae (F1-F7). All NFs improved the DEF dissolution compared to the unprocessed form, with the superiority of the PVP/PX hybrid. The optimized formula (F7) exhibited an average diameter of 655.46 ± 90.4 nm and % drug content of 84.33 ± 5.58. The dissolution parameters of DEF loaded in PVP/PX NFs (F7) reflected a release of 95.3 % ± 3.1 and 102.6 % ± 1.7 after 5 and 60 min, respectively. NFs (F7) was investigated for drug-polymer compatibility using Fourier-Transform Infrared Spectroscopy (FTIR), Powder X-ray diffraction analysis (PXRD), and Differential Scanning Calorimetry (DSC). In vivo anti-inflammatory study employing male Sprague-Dawley rats showed a significant reduction of rat paw edema for F7 (p < 0.05) compared with unprocessed DEF with a normal epidermal and dermal skin structure comparable to the healthy negative control. Immunohistochemical and morphometric data displayed similarities between the immune reaction of F7 and the negative healthy control. The finding of this work emphasized that DEF loaded in PVP/PX NFs could be considered a useful strategy for enhancing the therapeutic performance of DEF.


Subject(s)
Nanofibers , Povidone , Pregnenediones , Male , Rats , Animals , Povidone/chemistry , Polyvinyls , Poloxamer , Nanofibers/chemistry , Solubility , Rats, Sprague-Dawley , Polymers/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Anti-Inflammatory Agents , Calorimetry, Differential Scanning
2.
Int J Pharm ; 645: 123415, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37714313

ABSTRACT

Treating wound infections is a challenging concern in various clinical settings in Egypt, especially in the increasing global problem of resistance to antimicrobials. Here, we aimed to fabricate CuO NPs via green synthesis using aqueous Yucca gigantea extract. Then, the effect of green synthesized CuO NPs on Staphylococcus aureus clinical isolates has been studied in vivo and in vitro. The aqueous extract of Yucca gigantea has been employed in our study as a scale-up approach to safely, affordably, sustainably, and practically fabricate copper oxide nanoparticles (CuO NPs). Fourier transforms infrared (FT-IR), X-ray Diffraction (XRD), and UV-vis spectroscopy were utilized in vitro to describe the bonding features of CuO NPs.Scanning Electron microscopy (SEM), Transmission electron microscopy (TEM), Energy dispersive X-ray (EDX), and dynamic light scattering (DLS) were used to detect the morphological and elemental composition of the resulting CuO NPs. The fabrication of CuO NPs was confirmed by the IR spectral band at 515 cm-1, ensuring the metal-oxygen bondCu-O with two strong bands at 229 and 305 nm. SEM and TEM show CuO NPs with a size range from 30 to 50 nm. Cu and O comprised most of the particles produced through green synthesis, with weight percentages of 57.82 and 42.18 %, respectively. CuO NPs were observed to have a Zeta-potential value of -15.7 mV, demonstrating their great stability. CuO NPs revealed antibacterial potential toward the tested isolates with minimum inhibitory concentration values of 128 to 512 µg/mL. CuO NPs had antibiofilm potential by crystal violet assay, downregulating the expression of icaA and icaD genes in 23.07 % and 19.32 of the S. aureus isolates. The wound-healing potential of CuO NPs was investigated in vivo. It significantly decreased the bacterial burden and increased wound healing percentage compared to the positive control group. Moreover, CuO NPs caused an upregulation of the genes encoding platelet-derived growth factor (PDGF) and fibronectin in tissue repair. Thus, we can use CuO NPs as a future source for wound healing materials, especially in infected wounds.

3.
Pharm Dev Technol ; 28(7): 650-659, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37395006

ABSTRACT

OBJECTIVE: Developing mucoadhesive buccal films loaded with metoclopramide for the treatment of migraine-associated vomiting. METHODS: Buccal films were prepared using the solvent casting method. Several tests were conducted, including measurement of film weight, thickness, drug content, moisture uptake, swelling index, and DSC analysis. The bioadhesion properties were also assessed. Furthermore, in vitro release profiles and in human bioavailability were studied. RESULTS: The developed films were transparent, homogeneous, and easy to remove. Film weight and thickness increased with higher drug content. The drug entrapment exceeded 90%. Film weight increased with moisture uptake, and DSC analysis indicated the absence of drug crystallinity. Bioadhesion properties and swelling index decreased with increasing drug content. In vitro release demonstrated that drug release depended on the drug-polymer ratio. The in vivo study showed significant improvements in Tmax (from 1.21 ± 0.33 to 0.50 ± 0.0) and Cmax (from 45.29 ± 14.66 to 63.27 ± 24.85) compared to conventional tablets. CONCLUSION: The prepared mucoadhesive buccal films exhibited the desired characteristics and demonstrated enhanced drug absorption, evidenced by the significantly reduced Tmax and increased Cmax compared to conventional tablets. The results indicate the successful achievement of the study objectives in selecting and designing an effective pharmaceutical dosage form. as cm2.


Subject(s)
Metoclopramide , Mouth Mucosa , Humans , Metoclopramide/therapeutic use , Adhesiveness , Administration, Buccal , Drug Delivery Systems/methods
4.
Int J Pharm ; 642: 123111, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37302668

ABSTRACT

Currently, the spread of antimicrobial resistance dissemination is expanding at an accelerated rate. Therefore, numerous researchers haveinvestigatedalternative treatments in an effort to combat this significant issue. This study evaluated the antibacterial properties of zinc-oxide nanoparticles (ZnO NPs) synthesised by Cycas circinalis against Proteus mirabilis clinical isolates. HPLC was utilised for the identification and quantification of C. circinalis metabolites. The green synthesis of ZnO NPs has been confirmed using UV-VIS spectrophotometry. The Fourier transform infrared spectrum of metal oxide bonds has been compared to the free C. circinalis extract spectrum. The crystalline structure and elemental composition were investigated using X-ray diffraction and Energy-dispersive X-ray techniques. The morphology of nanoparticles was assessed by scanning and transmission electron microscopies, which revealed an average particle size of 26.83 ± 5.87 nm with spherical outlines. The dynamic light scattering technique confirms the optimum stability of ZnO NPs with a zeta potential value equal to 26.4 ± 0.49 mV. Using agar well diffusion and broth microdilution methods, we elucidated the antibacterial activity of ZnO NPs in vitro. MIC values for ZnO NPs ranged from 32 to 128 µg/mL. In 50% of the tested isolates, the membrane integrity was compromised by ZnO nanoparticles. In addition, we assessed the in vivo antibacterial capacity of ZnO NPs by a systemic infection induction using P. mirabilis bacteria in mice. The bacterial count in the kidney tissues was determined, and a significant decrease in CFU/g tissues was observed. The survival rate was evaluated, and the ZnO NPs treated group had higher survival rates. The histopathological studies demonstrated that kidney tissues treated with ZnO NPs had normal structures and architecture. Moreover, the immunohistochemical examinations and ELISA revealed that ZnO NPs substantially decreased the proinflammatory mediators NF-kß, COX-2, TNF-α, IL-6, and IL-1ß in kidney tissues. In conclusion, the results of this study suggest that ZnO NPs are effective against bacterial infections caused by P. mirabilis.


Subject(s)
Metal Nanoparticles , Nanoparticles , Zinc Oxide , Animals , Mice , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Proteus mirabilis , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanoparticles/chemistry , Oxides , Plant Extracts/chemistry , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared
5.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-37259403

ABSTRACT

Electrospraying (ES) technology is considered an efficient micro/nanoparticle fabrication technique with controlled dimensions and diverse morphology. Gelurice® 48/16 (GLR) has been employed to stabilize the aqueous dispersion of Celecoxib (CXB) for enhancing its solubility and oral bioavailability. Our formula is composed of CXB loaded in polyvinylpyllodine (PVP) stabilized with GLR to formulate microparticles (MPs) (CXB-GLR-PVP MPs). CXB-GLR-PVP MPs display excellent in vitro properties regarding particle size (548 ± 10.23 nm), zeta potential (-20.21 ± 2.45 mV), and drug loading (DL, 1.98 ± 0.059 mg per 10 mg MPs). CXB-GLR-PVP MPs showed a significant (p < 0.05) higher % cumulative release after ten minutes (50.31 ± 4.36) compared to free CXB (10.63 ± 2.89). CXB exhibited good dispersibility, proved by X-ray diffractometry (XRD), adequate compatibility of all components, confirmed by Fourier-Transform Infrared Spectroscopy (FTIR), and spherical geometry as revealed in scanning electron microscopy (SEM). Concerning our anti-inflammatory study, there was a significant decrease in the scores of the inflammatory markers' immunostaining in the CXB-GLR-PVP MPs treated group. Also, the amounts of the oxidative stress biomarkers, as well as mRNA expression of interleukins (IL-1ß and IL-6), considerably declined (p < 0.05) in CXB-GLR-PVP MPs treated group alongside an enhancement in the histological features was revealed. CXB-GLR-PVP MPs is an up-and-coming delivery system that could be elucidated in future clinical investigations.

6.
Artif Cells Nanomed Biotechnol ; 51(1): 255-267, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37154794

ABSTRACT

Respiratory tract infections are a common cause of morbidity and mortality globally. The current paper aims to treat this respiratory disorder. Therefore, we elucidated the phytochemical profile of Euphorbia milii flowers and isolated chlorogenic acid (CGA) for the first time. The electrospraying technique was utilized to prepare CGA nanoparticles in polyvinyl alcohol (PVA)/PLGA polymeric matrix. Complete in vitro characterizations were performed to determine particle size, polydispersity index (PDI), zeta potential, loading efficiency (LE), scanning electron microscopy and in vitro release study. The optimum formula (F2) with a particle size (454.36 ± 36.74 nm), a surface charge (-4.56 ± 0.84 mV), % of LE (80.23 ± 5.74), an initial burst (29.46 ± 4.79) and % cumulative release (97.42 ± 4.72) were chosen for further activities. In the murine lung infection model, PVA/PLGA NPs loaded with CGA (F2) demonstrated in vivo antibacterial activity against Pseudomonas aeruginosa. Using a plaque assay, the in vitro antiviral activity was investigated. The F2 exhibited antiviral activity against coronavirus (HCoV-229E) and (Middle East respiratory syndrome coronavirus (MERS-CoV), NRCEHKU270). The IC50 of F2 against HCoV-229E and MERS-CoV was 170 ± 1.1 and 223 ± 0.88 µg/mL, respectively. The values of IC50 of F2 were significantly lower (p < .05) than that of free CGA. Therefore, the encapsulation of CGA into electrospray PVA/PLGA NPs would be a promising tool as an antimicrobial agent.


Subject(s)
Middle East Respiratory Syndrome Coronavirus , Nanoparticles , Mice , Animals , Polyvinyl Alcohol/chemistry , Antiviral Agents , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Chlorogenic Acid/pharmacology , Pseudomonas aeruginosa , Anti-Bacterial Agents/pharmacology , Lung , Nanoparticles/chemistry
7.
Mar Drugs ; 20(11)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36355017

ABSTRACT

A potential fucoidan-based PEGylated PLGA nanoparticles (NPs) offering a proper delivery of N-methyl anthranilic acid (MA, a model of hydrophobic anti-inflammatory drug) have been developed via the formation of fucoidan aqueous coating surrounding PEGylated PLGA NPs. The optimum formulation (FuP2) composed of fucoidan:m-PEG-PLGA (1:0.5 w/w) with particle size (365 ± 20.76 nm), zeta potential (-22.30 ± 2.56 mV), % entrapment efficiency (85.45 ± 7.41), drug loading (51.36 ± 4.75 µg/mg of NPs), % initial burst (47.91 ± 5.89), and % cumulative release (102.79 ± 6.89) has been further investigated for the anti-inflammatory in vivo study. This effect of FuP2 was assessed in rats' carrageenan-induced acute inflammation model. The average weight of the paw edema was significantly lowered (p ≤ 0.05) by treatment with FuP2. Moreover, cyclooxygenase-2 and tumor necrosis factor-alpha immunostaining were decreased in FuP2 treated group compared to the other groups. The levels of prostaglandin E2, nitric oxide, and malondialdehyde were significantly reduced (p ≤ 0.05) in the FuP2-treated group. A significant reduction (p ≤ 0.05) in the expression of interleukins (IL-1ß and IL-6) with an improvement of the histological findings of the paw tissues was observed in the FuP2-treated group. Thus, fucoidan-based PEGylated PLGA-MA NPs are a promising anti-inflammatory delivery system that can be applied for other similar drugs potentiating their pharmacological and pharmacokinetic properties.


Subject(s)
Nanoparticles , Rats , Animals , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Particle Size , Anti-Inflammatory Agents/pharmacology , Drug Carriers/chemistry
8.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36145278

ABSTRACT

We aimed to synthesize zinc oxide nanoparticles (ZnO NPs) using the endophytic fungal extract of Aspergillus niger. The prepared ZnO NPs were characterized, and their in vitro and in vivo antibacterial activity was investigated. Isolated endophytic fungus identification was carried out using 18S rRNA. A. niger endophytic fungal extract was employed for the green synthesis of ZnO NPs. The in vitro antibacterial activity of the prepared ZnO NPs was elucidated against Staphylococcus aureus using the broth microdilution method and quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, the in vivo antibacterial activity was elucidated using a systemic infection model in mice. The biosynthesized ZnO NPs showed a maximum optical density at 380 nm with characteristic peaks on the Fourier-transform infrared spectrum. The X-ray diffraction pattern was highly matched with a standard platform of zinc oxide crystals. Energy-dispersive X-ray analysis confirmed that the main composition of nanoparticles was zinc and oxygen atoms. Scanning and transmission electron microscopies showed spherical geometry with a smooth surface. Zeta potential measurements (26.6 ± 0.56 mV) verified the adequate stability of ZnO NPs. Minimum inhibitory concentrations of ZnO NPs against S. aureus isolates ranged from 8 to 128 µg/mL. Additionally, ZnO NPs revealed antibiofilm activity, resulting in the downregulation of the tested biofilm genes in 29.17% of S. aureus isolates. Regarding the in vivo experiment, ZnO NPs reduced congestion and fibrosis in liver and spleen tissues. They also improved liver function, increased the survival rate, and significantly decreased inflammatory markers (p < 0.05). ZnO NPs synthesized by A. niger endophytic fungus revealed a promising in vivo and in vitro antibacterial action against S. aureus isolates.

9.
Int J Pharm ; 625: 122106, 2022 Sep 25.
Article in English | MEDLINE | ID: mdl-36029993

ABSTRACT

Nanofibers (NFs) provide several delivery advantages like their great flexibility and similarity with extracellular matrix (ECM) which qualify them to be the unique model of a wound dressing. NFs could create mats of polymeric matrix loaded with an active agent enhancing its solubility and stability. In our study, Gentiopicroside (GPS) and Thymoquinone (TQ) loaded in NFs polymeric mats composed of coblended polyvinyl pyrrolidine (PVP) and methyl ether Polyethylene glycol (m-PEG) were fabricated via electrospinning technique. A morphological study using Scanning Electron Microscopy (SEM) was performed for all formulae as well as in vitro release study using High-performance Liquid chromatography (HPLC) for sample analysis. The optimized formula (F3) was chosen for further assays using Fourier-Transform Infrared Spectroscopy (FTIR), and Differential Scanning Calorimetry (DSC). Study of the antibacterial effect, and in vivo healing action for diabetic infected wounds to quantify Tumor necrosis factor-alpha and Cyclooxygenase-2 were also investigated. F3 achieved the highest % cumulative release (99.79 ± 6.47 for GPS and 96.89 ± 6.87 for TQ) at 60 min, and a smaller diameter (200 nm) showing significant anti-bacterial effects with well-organized skin architecture demonstrating great healing signs. Our results revealed that m-PEG/PVP NFs mats loaded with GPS and TQ could be considered an optimal wound care dressing.


Subject(s)
Diabetes Mellitus, Experimental , Methyl Ethers , Nanofibers , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bandages , Benzoquinones , Diabetes Mellitus, Experimental/drug therapy , Iridoid Glucosides , Nanofibers/chemistry , Polyethylene Glycols , Polymers/chemistry , Polyvinyls , Pyrrolidines , Rats
10.
Drug Deliv ; 29(1): 1848-1862, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35708451

ABSTRACT

Epigallocatechin-3-gallate (EGCG) was isolated from Cycas thouarsii leaves for the first time and encapsulated in aqueous core poly(lactide-co-glycolide) (PLGA) nanocapsules (NCs). This work investigates antimicrobial activity and in vivo reno-protective effects of EGCG-PLGA NCs in cisplatin-induced nephrotoxicity. A double emulsion solvent evaporation process was adopted to prepare PLGA NCs loaded with EGCG. Particle size, polydispersity index (PDI), zeta potential, percent entrapment efficiency (%EE), structural morphology, and in vitro release platform were all studied in vitro. The optimum formula (F2) with particle size (61.37 ± 5.90 nm), PDI (0.125 ± 0.027), zeta potential (-11.83 ± 3.22 mV), %EE (85.79 ± 5.89%w/w), initial burst (36.85 ± 4.79), and percent cumulative release (87.79 ± 9.84) was selected for further in vitro/in vivo studies. F2 exhibited an enhanced antimicrobial activity against uropathogens as it had lower minimum inhibitory concentration (MIC) values and a more significant impact on bacterial growth than free EGCG. Forty male adult mice were randomly allocated into five groups: control vehicle, untreated methotrexate, MTX groups treated with a daily oral dose of free EGCG, placebo PLGA NCs, and EGCG PLGA NCs (F2) for 10 days. Results showed that EGCG PLGA NCs (F2) exerted promising renoprotective effects compared to free EGCG. EGCG PLGA NCs group induced a significant decrease in kidney index, serum creatinine, kidney injury molecule-1 (KIM-1), NGAL serum levels, and pronounced inhibition of NLPR-3/caspase-1/IL/1ß inflammasome pathway. It also significantly ameliorated oxidative stress and decreased NFκB, Bax expression levels. Aqueous core PLGA NCs are a promising formulation strategy that provides high polymeric protection and sustained release pattern for hydrophilic therapeutic agents.


Subject(s)
Nanocapsules , Nanoparticles , Animals , Anti-Bacterial Agents/pharmacology , Catechin/analogs & derivatives , Cisplatin , Kidney , Male , Mice , Nanocapsules/chemistry , Nanoparticles/chemistry , Particle Size , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry
11.
Artif Cells Nanomed Biotechnol ; 50(1): 96-106, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35361019

ABSTRACT

The increasing emergence of bacterial resistance is a challenge for the research community, thus novel antibacterial agents should be developed. Metal nanoparticles are promising antibacterial agents and could solve the problem of antibiotic resistance. Herein, we used Gardenia thailandica methanol extract (GTME) to biogenically synthesise zinc oxide nanoparticles (ZnO-NPs). The characterisation of ZnO-NPs was performed by UV spectroscopy, FTIR, scanning and transmission electron microscopes, dynamic light scattering, and X-ray diffraction. The antibacterial activity of ZnO-NPs was studied both in vitro and in vivo against Pseudomonas aeruginosa clinical isolates. Its minimum inhibitory concentration values ranged from 2 to 64 µg/mL, and it significantly decreased the membrane integrity and resulted in a significant increase in the inner and outer membrane permeability. Also, the ZnO-NPs treated cells possessed a distorted and deformed shape when examined by scanning electron microscope. The in vivo study (biochemical parameters and histological investigation) was conducted and it revealed a protective effect of ZnO-NPs against the deleterious influences of P. aeruginosa bacteria on lung, liver, and kidney tissues. LC-ESI-MS/MS revealed a phytochemical tentative identification of 57 compounds for the first time. We propose that GTME is a useful source for ZnO-NPs which has a promising antibacterial activity.


Subject(s)
Gardenia , Metal Nanoparticles , Zinc Oxide , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Metal Nanoparticles/chemistry , Plant Leaves/chemistry , Pseudomonas aeruginosa , Tandem Mass Spectrometry , Zinc Oxide/chemistry , Zinc Oxide/pharmacology
12.
Pharmaceutics ; 13(10)2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34683951

ABSTRACT

Atorvastatin Calcium (At-Ca) has pleiotropic effect as anti-inflammatory drug beside its main antihyperlipidemic action. Our study was conducted to modulate the anti-inflammatory effect of At-Ca to be efficiently sustained for longer time. Single oil-water emulsion solvent evaporation technique was used to fabricate At-Ca into polymeric nanoparticles (NPs). In vitro optimization survey was performed on Poly(lactide-co-glycolide) (PLGA) loaded with At-Ca regrading to particle size, polydispersity index (PDI), zeta potential, percent entrapment efficiency (% EE), surface morphology and in vitro release pattern. In vitro drug-polymers interactions were fully scanned using Fourier-Transform Infrared Spectroscopy (FTIR) and Differential Scanning calorimetry (DSC) proving that the method of fabrication is an optimal strategy maintaining the drug structure with no interaction with polymeric matrix. The optimized formula with particle size (248.2 ± 15.13 nm), PDI (0.126 ± 0.048), zeta potential (-12.41 ± 4.80 mV), % EE (87.63 ± 3.21%), initial burst (39.78 ± 6.74%) and percent cumulative release (83.63 ± 3.71%) was orally administered in Male Sprague-Dawley rats to study the sustained anti-inflammatory effect of At-Ca PLGA NPs after carrageenan induced inflammation. In vivo results demonstrate that AT-Ca NPs has a sustained effect extending for approximately three days. Additionally, the histological examination revealed that the epidermal/dermal layers restore their typical normal cellular alignment with healthy architecture.

13.
J Inflamm Res ; 14: 7411-7430, 2021.
Article in English | MEDLINE | ID: mdl-35002276

ABSTRACT

INTRODUCTION: The gastrointestinal tract (GIT) is vulnerable to various diseases. In this study, we explored the therapeutic effects of Brassica rapa flower extract (BRFE) on GIT diseases. METHODS: Liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) was used for phytochemical identification of the compounds in BRFE. The antibacterial activity of BRFE was investigated, and its impact on the bacterial outer and inner membrane permeability and membrane depolarization (using flow cytometry) was studied. In addition, the immunomodulatory activity of BRFE was investigated in vitro on lipopolysaccharide (LPS)-stimulated peripheral blood mononuclear cells (PBMCs) using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, the anti-inflammatory activity of BRFE was investigated by histopathological examination and qRT-PCR on indomethacin-induced gastric ulcers in rats. RESULTS AND DISCUSSION: LC-ESI-MS/MS phytochemically identified 57 compounds in BRFE for the first time. BRFE displayed antibacterial activity against bacteria that cause GIT infections, with increasing outer and inner membrane permeability. However, membrane depolarization was unaffected. BRFE also exhibited immunomodulatory activity in LPS-stimulated PBMCs by attenuating the upregulation of cyclooxygenase 2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin (IL)-6, tumor necrosis factor-alpha (TNF-α), and nuclear factor kappa B (NF-κB) gene expression compared with untreated LPS-stimulated PBMCs. In addition, BRFE exhibited anti-inflammatory activity required for maintaining gastric mucosa homeostasis by decreasing neutrophil infiltration with subsequent myeloperoxidase production, in addition to an increase in glutathione peroxidase (GPx) activity. Histopathological findings presented the gastroprotective effects of BRFE, as a relatively normal stomach mucosa was found in treated rats. In addition, BRFE modulated the expression of genes encoding IL-10, NF-κB, GPx, and myeloperoxidase (MPO). CONCLUSION: BRFE can be a promising source of therapeutic agents for treatment of GIT diseases.

14.
Drug Deliv Transl Res ; 8(5): 1053-1065, 2018 10.
Article in English | MEDLINE | ID: mdl-29971752

ABSTRACT

Insulin plays an important role in the wound healing process, but its method of delivery to the wound bed and subsequent effect on rate of healing is less well investigated. In this study, we evaluated the therapeutic effectiveness of topical human insulin delivery using a nanoparticulate delivery system suspended in a structured hydrogel vehicle. Poly(lactide-co-glycolide) (PLGA) nanoparticles (NP) of 202.6 nm diameter and loaded with 33.86 µg insulin per milligram of polymer were formulated using a modified double-emulsion solvent evaporation technique and dispersed in a dilatant hydrogel (poly(vinyl alcohol)-borate). Importantly, this hydrogel formulation was used to achieve ultimate contact with the wound bed. A comparison of wound healing rates following local administration of insulin in the free and nanoencapsulated forms was performed in diabetic and healthy rats. In non-diabetic rats, there was no significant difference between healing observed in control and wounds treated with free insulin (p > 0.05), whereas treatment with insulin encapsulated within PLGA NP showed a significant difference (p < 0.001). In diabetic cohorts, both free insulin and nanoencapsulated insulin induced significant improvement in wound healing when compared to controls, with better percentage wound injury indices observed with the colloidal formulation. At day 10 of the experiment, the difference between percentage wound injury indices of insulin-PLGA NP and free insulin comparing to their controls were 29.15 and 12.16%, respectively. These results support strongly the potential of insulin-loaded colloidal carriers for improved wound healing when delivered using dilatant hydrogel formulations.


Subject(s)
Borates/chemistry , Diabetes Mellitus, Experimental/drug therapy , Insulin/administration & dosage , Nanoparticles/chemistry , Polyvinyl Alcohol/chemistry , Wound Healing/drug effects , Administration, Topical , Animals , Diabetes Mellitus, Experimental/complications , Disease Models, Animal , Drug Delivery Systems/methods , Humans , Insulin/pharmacology , Random Allocation , Rats , Streptozocin
15.
Eur J Pharm Sci ; 114: 372-384, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29288081

ABSTRACT

We describe the development of a nanoparticulate system, with variation of poly(ethylene glycol) (PEG) content, capable of releasing therapeutic levels of bioactive insulin for extended periods of time. Recombinant human insulin was encapsulated in poly(d,l-lactide-co-glycolide) nanoparticles, manufactured with variation in poly(ethylene glycol) content, and shown to be stable for 6days using SDS-PAGE, western blot and MALDI MS. To determine if insulin released from this sustained release matrix could stimulate migration of cell types normally active in dermal repair, a model wound was simulated by scratching confluent cultures of human keratinocytes (HaCaT) and fibroblasts (Hs27). Although free insulin was shown to have proliferative effect, closure of in vitro scratch fissures was significantly faster following administration of nano-encapsulated insulin. This effect was more pronounced in HaCaT cells when compared to Hs27 cells. Variation in PEG content had the greatest effect on NP size, with a lesser influence on scratch closure times. Our work supports a particulate uptake mechanism that provides for intracellular insulin delivery, leading to enhanced cell proliferation. When placed into an appropriate topical delivery vehicle, such as a hydrogel, the extended and sustained topical administration of active insulin delivered from a nanoparticulate vehicle shows promise in promoting tissue healing.


Subject(s)
Cytoplasm/metabolism , Drug Delivery Systems/methods , Insulin/metabolism , Nanoparticles/metabolism , Polyethylene Glycols/metabolism , Wound Healing/drug effects , Administration, Cutaneous , Cell Line , Cell Proliferation/drug effects , Cell Proliferation/physiology , Cell Survival/drug effects , Cell Survival/physiology , Cytoplasm/drug effects , Drug Carriers/administration & dosage , Drug Carriers/metabolism , Drug Liberation/drug effects , Drug Liberation/physiology , Drug Stability , Humans , Insulin/administration & dosage , Keratinocytes/drug effects , Keratinocytes/metabolism , Nanoparticles/administration & dosage , Polyethylene Glycols/administration & dosage , Wound Healing/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...