Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cryst Growth Des ; 22(12): 7395-7404, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36510623

ABSTRACT

A new family of metal-organic frameworks (MOFs) named GR-MOFs with the chemical formula {[M x (BCA) y ](H2O) z (DMF) w } (x,y,z,w: 1,1,2,0; 1,1.5,0,1; 1,2,2,1; and 1,1,0,2 for GR-MOF-11 to 14, respectively) based on s-block [M: Sr (GR-MOF-11), Ba (GR-MOF-14)] and d-block [M: Y (GR-MOF-12) and Cd (GR-MOF-13)] metals together with the biquinoline ligand 2,2'-bicinchoninic acid (H2BCA) has been synthetized by a solvothermal route and fully characterized by elemental and thermogravimetric analysis, Fourier transform infrared spectroscopy, photoluminescence, particle size distribution through optical microscopy, electrophoretic mobility, and finally, X-ray single-crystal and powder diffraction. The structural characterization reveals that these 2D and 3D MOFs possess a rich variety of coordination modes that maintained the Janus-head topology on the ligand in most of the cases. The new MOFs were studied in the catalyzed cyanosilylation and hydroboration of an extensive group of aldehydes and ketones, wherein the s-block metal-based MOFs GR-MOF-11 and GR-MOF-14 provided the highest efficiency ever reported in the MOF-catalyzed cyanosilylation of carbonyl compounds by using only 0.5 mol % of catalyst loading, room temperature, and solvent-free conditions. Furthermore, the hydroboration of ketones has been reported for the first time with this type of s-block metal catalysts obtaining from moderate to good conversions.

2.
Molecules ; 27(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36432174

ABSTRACT

Due to the fast, emerging development of antibiotic-resistant bacteria, the need for novel, efficient routes to battle these pathogens is crucial; in this scenario, metal-organic frameworks (MOFs) are promising materials for combating them effectively. Herein, a novel Cu-MOF-namely 1-that displays the formula [Cu3L2(DMF)2]n (DMF = N,N-dimethylformamide) is described, synthesized by the combination of copper(II) and 3,4-dihydroxybenzoic acid (H3L)-both having well-known antibacterial properties. The resulting three-dimensional structure motivated us to study the antibacterial activity, adsorptive capacity and processability of the MOF in the form of pellets and membranes as a proof-of-concept to evaluate its future application in devices.


Subject(s)
Anti-Bacterial Agents , Copper , Copper/chemistry , Ligands , Adsorption , Anti-Bacterial Agents/pharmacology
3.
Nanomaterials (Basel) ; 12(18)2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36144944

ABSTRACT

In this paper, we present the results of the gamma irradiation method to obtain N-doped mesoporous activated carbons. Nitrogen-enriched mesoporous carbons were prepared from three chosen commercial activated carbons such as Carbon Black OMCARB C-140, KETJENBLACK EC-600JD and PK 1-3 Norit. HRTEM, SEM, Raman spectra, elemental analysis, XPS studies and widely approved N2 adsorption-desorption measurements allowed us to evaluate the effectiveness of N atom insertion and its influence on the BET surface area and the pore structure of modified carbons. The obtained materials have an exceptionally high N content of up to 3.2 wt.%. Additionally, selected N-doped activated carbons were fully characterized to evaluate their applicability as carbon electrode materials with particular emphasis on Oxygen Reduction Reaction (ORR). The proposed method is a relatively facile, efficient and universal option that can be added to the already known methods of introducing heteroatoms to different carbons.

4.
Inorg Chem ; 61(3): 1377-1384, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35015526

ABSTRACT

A new Y-based metal-organic framework (MOF) GR-MOF-6 with a chemical formula of {[YL(DMF)2]·(DMF)}n {H3L = 5-[(4-carboxyphenyl)ethynyl] isophthalic acid; DMF = N,N-dimethylformamide} has been prepared by a solvothermal route. Structural characterization reveals that this novel material is a three-dimensional MOF in which the coordination of the tritopic ligand to Y(III) metal ions leads to an intercrossing channel system extending over three dimensions. This material has proven to be a very efficient catalyst in the cyanosilylation of carbonyls, ranking second in catalytic activity among the reported rare earth metal-based MOFs described so far but with the lowest required catalyst loading. In addition, its electrophoretic behavior has been studied in depth, providing a zero-charge point between pH 4 and 5, a peak electrophoretic mobility of -1.553 µm cm V-1 s-1, and a ζ potential of -19.8 mV at pH 10.

SELECTION OF CITATIONS
SEARCH DETAIL
...