Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 30(22): 127577, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32979487

ABSTRACT

An inhibitor bearing a phosphinylphosphonate group appended to a guanidinium functionality was designed to inhibit enzymes that generate carbocations from dimethylallyl diphosphate. When tested against human farnesyl diphosphate synthase the inhibitor bound with high micromolar affinity and did not bind more tightly than an isosteric inhibitor lacking the guanidinium functionality. When tested against the Type I isopentenyl diphosphate:dimethylallyl diphosphate isomerase from Escherichia coli, the inhibitor bound with a Ki value of 120 nM, which was 400 times greater than its isosteric counterpart. This strategy of inhibition was much more effective with an enzyme that generates a carbocation that is not stabilized by both resonance and ion pairing, presumably because there is more evolutionary pressure on the enzyme to stabilize the cation.


Subject(s)
Carbon-Carbon Double Bond Isomerases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Guanidine/pharmacology , Hemiterpenes/antagonists & inhibitors , Carbon-Carbon Double Bond Isomerases/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Escherichia coli/enzymology , Geranyltranstransferase/antagonists & inhibitors , Geranyltranstransferase/metabolism , Guanidine/chemical synthesis , Guanidine/chemistry , Hemiterpenes/metabolism , Humans , Molecular Structure , Structure-Activity Relationship
2.
Biochemistry ; 57(38): 5591-5601, 2018 09 25.
Article in English | MEDLINE | ID: mdl-30179505

ABSTRACT

Dehydrosqualene and squalene synthases catalyze the redox neutral and the reductive, head-to-head dimerization of farnesyl diphosphate, respectively. In each case, the reaction is thought to proceed via an initial dissociation of farnesyl diphosphate to form an allylic carbocation-pyrophosphate ion pair. This work describes the synthesis and testing of inhibitors in which a guanidinium or amidinium moiety is flanked by a phosphonylphosphinate group and a hydrocarbon tail. These functional groups bear a planar, delocalized, positive charge and therefore should act as excellent mimics of an allylic carbocation. An inhibitor bearing a neutral urea moiety was also prepared as a control. The positively charged inhibitors acted as competitive inhibitors against Staphylococcus aureus dehydrosqualene synthase with Ki values in the low micromolar range. Surprisingly, the neutral urea inhibitor was the most potent of the three. Similar trends were seen with the first half reaction of human squalene synthase. One interpretation of these results is that the active sites of these enzymes do not directly stabilize the allylic carbocation via electrostatic or π-cation interactions. Instead, it is likely that the enzymes use tight binding to the pyrophosphate and lipid moieties to promote catalysis and that electrostatic stabilization of the carbocation is provided by the bound pyrophosphate product. An alternate possibility is that these inhibitors cannot bind to the "ionization FPP-binding site" of the enzyme and only bind to the "nonionizing FPP-binding site". In either case, all reported attempts to generate potent inhibitors with cationic FPP analogues have been unsuccessful to date.


Subject(s)
Amidines/chemistry , Bacterial Proteins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Farnesyl-Diphosphate Farnesyltransferase/antagonists & inhibitors , Guanidine/chemistry , Staphylococcus aureus/enzymology , Binding Sites , Catalysis , Catalytic Domain , Enzyme Inhibitors/chemistry , Models, Molecular , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...