Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 14(7)2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34206182

ABSTRACT

Macrolides were reported to have cardiotoxic effects presented mainly by electrocardiogram (ECG) changes with increased risk in cardiac patients. We aimed to determine the impact of three macrolides, azithromycin, clarithromycin and erythromycin, on cardiac electrophysiology, cardiac enzyme activities, histopathological changes, and sodium voltage-gated alpha subunit 5 (Nav1.5) channel expression. We used eight experimental groups of male albino rats: vehicle, azithromycin (100 mg/kg), clarithromycin (100 mg/kg), erythromycin (100 mg/kg), MI + vehicle, MI + azithromycin (100 mg/kg), MI + clarithromycin (100 mg/kg) and MI + erythromycin (100 mg/kg); each group received chronic oral doses of the vehicle/drugs for seven weeks. ECG abnormalities and elevated serum cardiac enzymes were observed particularly in rats with AMI compared to healthy rats. Microscopic examination revealed elevated pathology scores for rats treated with clarithromycin in both experiments following treatment with erythromycin in healthy rats. Although rats with MI did not show further elevations in fibrosis score on treatment with macrolides, they produced significant fibrosis in healthy rats. Downregulation of cardiac Nav1.5 transcript was observed following macrolides treatment in both groups (healthy rats and rats with MI). In conclusion, the current findings suggested the potential cardiotoxic effects of chronic doses of macrolide antibiotics in rats with MI as manifested by abnormal ECG changes and pathological findings in addition to downregulation of Nav1.5 channels. Furthermore, in the current dose ranges, azithromycin produced the least toxicity compared to clarithromycin and erythromycin.

2.
Biomed Pharmacother ; 92: 196-206, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28544933

ABSTRACT

Prolongation of QT interval is possible with fluoroquinolones, yet the underlying contributing factors have not been elucidated. Two widely used fluoroquinolone drugs were at the focus of this study in rats with/without acute myocardial dysfunction (AMI) induced by isoproterenol. The effects of levofloxacin and ciprofloxacin on the cardiac mRNA expression of rat Kv4.3, Kv1.2 and Nav1.5 mRNAs were determined. Administration of the two antibiotics produced dose-dependent changes in ECG parameters that were more prominent in rats with AMI than healthy rats; this was accompanied by elevations in serum lactate dehydrogenase and creatine kinase-MB. Histopathological examination indicated some loss of striations, edema and fibrotic changes in rats with AMI; however the two antibiotics did not further exacerbate the cardiac histopathology. mRNA expression of the ion channels was altered in rats with AMI and healthy rats. In conclusion, long-term administration of levofloxacin and ciprofloxacin produced deleterious effects on the ECG pattern of rats with/without AMI. The effect was generally baseline-dependent and therefore, rats with AMI showed greater ECG disturbances and increases in cardiac enzymes. Taken together, these data make it advisable to monitor patients with a history of acute AMI requiring treatment with these antibiotics until data from human studies are available.


Subject(s)
Cardiotoxins/toxicity , Ciprofloxacin/toxicity , Kv1.2 Potassium Channel/biosynthesis , Levofloxacin/toxicity , Myocardial Infarction/physiopathology , NAV1.5 Voltage-Gated Sodium Channel/biosynthesis , Shal Potassium Channels/biosynthesis , Animals , Anti-Bacterial Agents/toxicity , Dose-Response Relationship, Drug , Electrocardiography/drug effects , Gene Expression , Heart Rate/drug effects , Heart Rate/physiology , Kv1.2 Potassium Channel/genetics , Male , Myocardial Infarction/chemically induced , Myocardial Infarction/genetics , NAV1.5 Voltage-Gated Sodium Channel/genetics , Rats , Rats, Wistar , Shal Potassium Channels/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...