Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Pharm (Weinheim) ; 355(9): e2100385, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35642312

ABSTRACT

Fourteen new thienylnicotinamidines and their analogs 5a-5k, 12, 13a, and 13b were prepared and their antiproliferative potential was evaluated against the growth of 60 cancer cell lines. The tested compounds had a strong antiproliferative efficacy against almost all cancer cell lines, with the average GI50 at ~2.20 µM. The effect of the thienylnicotinamidines on the growth of normal lung fibroblast cells (WI-38) indicated that these derivatives are safe to the normal cells. The selectivity index (SI) ranges from 5.5- to 42.0-fold. The conceivable mechanisms of action of the effective compounds 5d, 5f, 5g, 5i, 5j, and 5k with high SI were investigated. Although the thienylnicotinamidines are similar in structure, they could be divided into three groups as per their effects on gene expression: The first group (5d and 5f) elevated p53 and caspase 3 expression, the second group (5g and 5i) elevated p53 expression, and the last group (5j and 5k) elevated p53 and reduced topoII expression. Many thienylnicotinamides inhibited the vascular endothelial growth factor receptor-2 (VEGFR-2) in cell lysates at concentrations comparable to or better than pazopanib. The data of caspase 3 expression were confirmed by measuring the protein level by Western blot and the activity of the cleaved active enzyme. The ability to arrest the cell cycle and induce apoptosis was confirmed by flow cytometry. Taken together, two derivatives, 5d and 5f, with a distinctive VEGFR-2 inhibitory activity and a proapoptotic and cell cycle arrest profile merit further investigations.


Subject(s)
Antineoplastic Agents , Vascular Endothelial Growth Factor Receptor-2 , Apoptosis , Caspase 3/metabolism , Cell Cycle Checkpoints , Cell Proliferation , Drug Screening Assays, Antitumor , Hep G2 Cells , Humans , Niacinamide/chemistry , Structure-Activity Relationship , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/pharmacology
2.
RSC Adv ; 10(67): 41165-41176, 2020 Nov 09.
Article in English | MEDLINE | ID: mdl-35519193

ABSTRACT

Three thienylpicolinamidine derivatives 4a-c were prepared from their corresponding picolinonitriles 3a-c on treatment with lithium trimethylsilylamide, LiN(TMS)2, followed by a de-protection step using ethanol/HCl (gas). DFT calculations were used to optimize the geometric structure of the newly synthesized picolinamidines. The comparison of DFT calculated spectral data with the experimental data (1H-NMR and 13C-NMR) showed a good agreement. The in vitro antiproliferative activity of the cationic compounds 4a-c was determined against 60 cancer cell lines representing nine types of cancer. The tested picolinamidines were highly active with compounds 4a and 4b eliciting mainly cytotoxic activity with GI values ranging from -7.17 to -86.03. Leukemia (SR and K-562), colon (SW-620 and HT29), and non-small cell lung cancer (NCI-H460) cell lines were the most responsive to the investigated picolinamidines. In particular, 4-methoxyphenyl derivative 4a showed a profound growth deterring power with GI50 of 0.34 µM against SR, 0.43 µM against SW-620, and 0.52 µM against NCI-H460. The three tested picolinamidines elicited potent GI50 values against all tested cell lines at low micromolar to sub-micromolar level. The new picolinamidines were selective and did not affect normal human fibroblasts. The selectivity index ranged from 13-21 µM. The novel picolinamidines downregulated the expression of key genes in the cell cycle, cdk1 and topoII, but did not affect p53 or txnrd1. Compounds 4b and 4c caused a significant reduction in the concentrations of TopoII and MAPK proteins but were devoid of any effect on the activity of caspase 3. Taken together, these promising anticancer candidates are effective at very low concentrations and safe to normal cells, and most probably work through arresting the cell cycle, and therefore, they deserve further investigations.

SELECTION OF CITATIONS
SEARCH DETAIL
...