Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(7)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38610565

ABSTRACT

This paper presents a comprehensive exploration of a hybrid energy system that integrates wind turbines with photovoltaics (PVs) to address the intermittent nature of electricity production from these sources. The necessity for such technology arises from the sporadic nature of electricity generated by PV cells and wind turbines. The envisioned outcome is an emissions-free, more efficient alternative to traditional energy sources. A variety of optimization techniques are utilized, specifically the Particle Swarm Optimization (PSO) algorithm and Electric Eel Foraging Optimization (EEFO), to achieve optimal power regulation and seamless integration with the public grid, as well as to mitigate anticipated loading issues. The employed mathematical modeling and simulation techniques are used to assess the effectiveness of EEFO in optimizing the operation of grid-connected PV and wind turbine hybrid systems. In this paper, the optimization methods applied to the system's architecture are described in detail, providing a clear understanding of the intricate nature of the approach. The efficacy of these optimization strategies is rigorously evaluated through simulations of diverse operating scenarios using MATLAB/SIMULINK. The results demonstrate that the proposed optimization strategies are not only capable of precisely and swiftly compensating for linked loads, but also effectively controlling the energy supply to maintain the load's power at the desired level. The findings underscore the potential of this hybrid energy system to offer a sustainable and reliable solution for meeting power demands, contributing to the advancement of clean and efficient energy technologies. The results demonstrate the capability of the proposed approach to improve system performance, maximize energy yield, and enhance grid integration, thereby contributing to the advancement of renewable energy technologies and sustainable energy systems.

2.
Materials (Basel) ; 15(5)2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35269149

ABSTRACT

The effect of isothermal conditions on the trapping/detrapping process of charges in e-beam irradiated thermally aged XLPE insulation in scanning electron microscopy (SEM) has been investigated. Different isothermal conditions ranging from room temperature to 120 °C are applied on both unaged and aged XLPE samples (2 mm thick) by a suitable arrangement associated with SEM. For each applied test temperature, leakage, and influence currents have been measured simultaneously during and after e-beam irradiation. Experimental results show a big difference between the fresh and aged material regarding trapping and detrapping behavior. It has been pointed out that in the unaged material deep traps govern the process, whereas the shallow traps take part in the aged one. Almost all obtained results reveal that the trapped charge decreases and then increases as the temperature increases for the unaged sample. A deflection temperature corresponding to a minimum is observed at 50 °C. However, for the aged material, the maximum trapped charge decreases continuously with increasing temperature, and the material seems to trap fewer charges under e-beam irradiation at high temperature. Furthermore, thermal aging leads to the occurrence of detrapping process at high temperatures even under e-beam irradiation, which explains the decrease with time evolution of trapped charge during this period. The recorded leakage current increases with increasing temperature for both cases with pronounced values for aged material. The effect of temperature and thermal aging on electrostatic influence factor (K) and total secondary electron emission yield (σ) were also studied.

SELECTION OF CITATIONS
SEARCH DETAIL
...