Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Publication year range
1.
J Pharmacopuncture ; 25(2): 121-129, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35837142

ABSTRACT

Objectives: The chemical composition of cactus pear seed oil (Opuntia ficus-indica [L.] Mill.) was analyzed in terms of its fatty acid composition, tocopherol content, phenolic identification, and the oil's phenolic-rich fraction antioxidant power was determined. Methods: Fatty acid profiling was performed by gas chromatography coupled to an FI detector. Tocopherols and phenolic compounds were analyzed by LC-FLD/UV, and the oil's phenolic-rich fraction antioxidant power was determined by phosphomolybdenum, DPPH assay and ß-carotene bleaching test. Results: Fatty acid composition was marked by a high unsaturation level (83.22 ± 0.34%). The predominant fatty acid was linoleic acid (66.79 ± 0.78%), followed by oleic acid (15.16 ± 0.42%) and palmitic acid (12.70 ± 0.03%). The main tocopherol was γ-tocopherol (172.59 ± 7.59 mg/kg. In addition, Tyrosol, vanillic acid, vanillin, ferulic acid, pinoresinol, and cinnamic acid were identified as phenolic compounds in the analyzed seed oil. Moreover, the oil's phenolics-rich fraction showed a significant total antioxidant activity, scavenged DPPH up to 97.85%, and effectively protected ß-carotene against bleaching (97.56%). Conclusion: The results support the potential use of cactus pear seed oil as a functional food.

2.
Journal of Integrative Medicine ; (12): 115-124, 2019.
Article in English | WPRIM (Western Pacific) | ID: wpr-774276

ABSTRACT

OBJECTIVE@#This study aims to evaluate the vasodilatory effect of Chenopodium ambrosioides on the isolated rat aorta, and to explore its mechanism of action.@*METHODS@#The vasorelaxant effect and the mode of action of various extracts from the leaves of C. ambrosioides were evaluated on thoracic aortic rings isolated from Wistar rats. In addition, ethyl acetate and methanol fractions were analyzed, using thin-layer chromatography and high-performance liquid chromatography techniques, for their polyphenolic content.@*RESULTS@#The various active extracts of C. ambrosioides at four concentrations (10, 10, 10 and 1 mg/mL) relaxed the contraction elicited by phenylephrine, in a concentration-dependent manner. This effect seems to be endothelium-dependent, since the vasodilatory effect was entirely absent in denuded aortic rings. The vasorelaxant effect of the methanol fraction (MF) of C. ambrosioides at 1 mg/mL was also inhibited by atropine and tetraethylammonium. This effect remained unchanged by Nω-nitro-l-arginine methyl ester hydrochloride and glibenclamide. The preliminary phytochemical analysis showed that the leaves of C. ambrosioides are rich in phenolic and flavonoid derivatives.@*CONCLUSION@#These results suggest that the MF of C. ambrosioides produces an endothelium-dependent relaxation of the isolated rat aorta, which is thought to be mediated mainly through stimulation of the muscarinic receptors, and probably involving the opening of Ca-activated potassium channels.

3.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-950341

ABSTRACT

Objective: To assess the antidiabetic effect of Opuntia dillenii seed oil on rats with diabetes mellitus. Methods: A rat diabetes model was established by intraperitoneal injection of rats with 50 mg/kg streptozotocin. Thirty albino Wistar rats were divided into five groups: the diabetic control group and normal control group were treated only with distilled water, two diabetic groups received 1 and 2 mL/kg of oil per day, respectively, for 30 days and one diabetic group received 2 mg/kg of glibenclamide. In addition, blood glucose was determined weekly. Body weight, average daily food, water intake and urinary volume of each animal were determined before and after the treatment period. After the treatment period, hepatic glycogen was determined using the anthrone reagent, and glycosuria, total cholesterol, triglycerides, alanine aminotransferase, aspartate aminotransferase, urea, creatinine and uric acid were estimated using common clinical diagnostic kits. Results: Oral intake of the oil at 1 and 2 mL/kg for the diabetic animals significantly diminished blood glucose, glycosuria, total cholesterol, triglycerides, alanine aminotransferase, aspartate aminotransferase, urea, creatinine and uric acid, accompanied by a noticeable elevation in the amount of hepatic glycogen in comparison with the diabetic control group. Similarly, Opuntia dillenii seed oil significantly increased the food intake and decreased the urinary volume per day in treated rats of the same groups in comparison with the period before the treatment intervention and attenuated body weight loss in the diabetic rats. Moreover, this effect of the oil was dose dependent. On the other hand, the oil did not affect their need for water. Conclusions: The results show that Opuntia dillenii seed oil has a very important antidiabetic effect on streptozotocin-induced diabetic rats. Hence, we suggest it as a preventive control of diabetes mellitus.

4.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-950435

ABSTRACT

Objective: To investigate the hepatoprotective effect of Opuntia dillenii seed oil (ODSO) on CCl

5.
Asian Pac J Trop Med ; 8(7): 532-7, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26276283

ABSTRACT

OBJECTIVE: To evaluate the in vitro antioxidant power of cactus pear seed oil [Opuntia ficus-indica L. MILL. (CPSO)] and its protective effect against chemically induced diabetes mellitus in mice. METHODS: The in vitro antioxidant effect of CPSO was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging assay. The preventive effect was conducted on Swiss albino mice treated with CPSO (2 mL/kg, per os), before and after a single intraperitoneal alloxan administration (100 mg/kg). Survival rate, body weight and fasting blood glucose were measured and histopathological analysis of pancreas was performed to evaluate alloxan-induced tissue injuries. RESULTS: CPSO exhibited an antioxidant effect in DPPH scavenging assay. Moreover, the administration of CPSO (2 mL/kg) significantly attenuated alloxan-induced death and hyperglycemia (P < 0.001) in treated mice. Morphometric study of pancreas revealed that CPSO significantly protected islets of langerhans against alloxan induced-tissue alterations. CONCLUSIONS: Based on theses results, CPSO can prevente alloxan-induced-diabetes by quenching free radicals produced by alloxan and inhibiting tissue injuries in pancreatic ß-cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...