Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Mol Cell Res ; 1869(9): 119276, 2022 09.
Article in English | MEDLINE | ID: mdl-35489654

ABSTRACT

The phagocyte NADPH oxidase (NOX2) is a key enzyme of the innate immune system generating superoxide anions (O2•-), precursors of reactive oxygen species. The NOX2 protein complex is composed of six subunits: two membrane proteins (gp91phox and p22phox) forming the catalytic core, three cytosolic proteins (p67phox, p47phox and p40phox) and a small GTPase Rac. The sophisticated activation mechanism of the NADPH oxidase relies on the assembly of cytosolic subunits with the membrane-bound components. A chimeric protein, called 'Trimera', composed of the essential domains of the cytosolic proteins p47phox (aa 1-286), p67phox (aa 1-212) and full-length Rac1Q61L, enables a constitutive and robust NOX2 activity in cells without the need of any stimulus. We employed Trimera as a single activating protein of the phagocyte NADPH oxidase in living cells and examined the consequences on the cell physiology of this continuous and long-term NOX activity. We showed that the sustained high level of NOX activity causes acidification of the intracellular pH, triggers apoptosis and leads to local peroxidation of lipids in the membrane. These local damages to the membrane correlate with the strong tendency of the Trimera to clusterize in the plasma membrane observed by FRET-FLIM microscopy.


Subject(s)
Apoptosis , NADPH Oxidases , Cytosol/metabolism , Hydrogen-Ion Concentration , Lipid Peroxidation , NADPH Oxidases/genetics , NADPH Oxidases/metabolism
2.
J Physiol ; 598(14): 2875-2895, 2020 07.
Article in English | MEDLINE | ID: mdl-31900932

ABSTRACT

KEY POINTS: Ventricular arrhythmias are a major complication after myocardial infarction (MI), associated with sympathetic activation. The structurally heterogeneous peri-infarct zone is a known substrate, but the functional role of the myocytes is less well known. Recordings of monophasic action potentials in vivo reveal that the peri-infarct zone is a source of delayed afterdepolarizations (DADs) and has a high beat-to-beat variability of repolarization (BVR) during adrenergic stimulation (isoproterenol, ISO). Myocytes isolated from the peri-infarct region have more DADs and spontaneous action potentials, with spontaneous Ca2+ release, under ISO. These myocytes also have reduced repolarization reserve and increased BVR. Other properties of post-MI remodelling are present in both peri-infarct and remote myocytes. These data highlight the importance of altered myocyte adrenergic responses in the peri-infarct region as source and substrate of post-MI arrhythmias. ABSTRACT: Ventricular arrhythmias are a major early complication after myocardial infarction (MI). The heterogeneous peri-infarct zone forms a substrate for re-entry while arrhythmia initiation is often associated with sympathetic activation. We studied the mechanisms triggering these post-MI arrhythmias in vivo and their relation to regional myocyte remodelling. In pigs with chronic MI (6 weeks), in vivo monophasic action potentials were simultaneously recorded in the peri-infarct and remote regions during adrenergic stimulation with isoproterenol (isoprenaline; ISO). Sham animals served as controls. During infusion of ISO in vivo, the incidence of delayed afterdepolarizations (DADs) and beat-to-beat variability of repolarization (BVR) was higher in the peri-infarct than in the remote region. Myocytes isolated from the peri-infarct region, in comparison to myocytes from the remote region, had more DADs, associated with spontaneous Ca2+ release, and a higher incidence of spontaneous action potentials (APs) when exposed to ISO (9.99 ± 4.2 vs. 0.16 ± 0.05 APs/min, p = 0.004); these were suppressed by CaMKII inhibition. Peri-infarct myocytes also had reduced repolarization reserve and increased BVR (26 ± 10 ms vs. 9 ± 7 ms, P < 0.001), correlating with DAD activity. In contrast to these regional distinctions under ISO, alterations in Ca2+ handling at baseline and myocyte hypertrophy were present throughout the left ventricle (LV). Expression of some of the related genes was, however, different between the regions. In conclusion, altered myocyte adrenergic responses in the peri-infarct but not the remote region provide a source of triggered activity in vivo and of repolarization instability amplifying the substrate for re-entry. These findings stimulate further exploration of region-specific therapies targeting myocytes and autonomic modulation.


Subject(s)
Myocardial Infarction , Myocytes, Cardiac , Action Potentials , Adrenergic Agents , Animals , Arrhythmias, Cardiac/etiology , Swine
3.
Sci Rep ; 9(1): 8879, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31222006

ABSTRACT

After myocardial infarction, resident fibroblasts (Fb) differentiate towards myofibroblasts (MyoFb), generating the scar tissue and the interstitial fibrosis seen in the adjacent myocardium. Fb and MyoFb have the potential to interact with cardiac myocytes (CMs) but insight into the phenotype-specific role and mode of interaction is still incomplete. Our objectives are to further define the modulation of CMs by MyoFbs compared to Fbs, as well as the role of direct contact through gap junctions vs. soluble mediators, using Fbs and CMs from pig left ventricle. Fbs were treated to maintain an undifferentiated state (SD-208) or to attain full differentiation to MyoFb (TGF-ß1). Fbs and MyoFbs were co-cultured with CMs, with the possibility of direct contact or separated by a Thincert membrane. Only in direct co-culture, both Fbs and MyoFbs were able to decrease CM viability after 2 days. Only MyoFbs induced significant distal spreading of CMs in both direct and indirect co-culture. MyoFbs, but not Fbs, readily made connections with CMs in direct co-culture and connexin 43 expression in MyoFb was higher than in Fb. When coupled to CMs, MyoFbs reduced the CM action potential duration and hyperpolarized the CM resting membrane potential. Uncoupling reversed these effects. In conclusion, MyoFbs, but not Fbs, alter the CM structural phenotype. MyoFbs, but not Fbs, are likely to electrically connect to CMs and thereby modulate the CM membrane potential. These data provide further support for an active role of MyoFbs in the arrhythmogenic substrate after cardiac remodelling.


Subject(s)
Myocytes, Cardiac/cytology , Myofibroblasts/cytology , Animals , Cell Differentiation , Coculture Techniques , Membranes, Artificial , Swine , Transforming Growth Factor beta1/metabolism
4.
J Am Coll Cardiol ; 73(18): 2267-2282, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31072570

ABSTRACT

BACKGROUND: Interstitial fibrosis is an important component of diastolic, and systolic, dysfunction in heart failure (HF) and depends on activation and differentiation of fibroblasts into myofibroblasts (MyoFb). Recent clinical evidence suggests that in late-stage HF, fibrosis is not reversible. OBJECTIVES: The study aims to examine the degree of differentiation of cardiac MyoFb in end-stage HF and the potential for their phenotypic reversibility. METHODS: Fibroblasts were isolated from the left ventricle of the explanted hearts of transplant recipients (ischemic and dilated cardiomyopathy), and from nonused donor hearts. Fibroblasts were maintained in culture without passaging for 4 or 8 days (treatment studies). Phenotyping included functional testing, immunostaining, and expression studies for markers of differentiation. These data were complemented with immunohistology and expression studies in tissue samples. RESULTS: Interstitial fibrosis with cross-linked collagen is prominent in HF hearts, with presence of activated MyoFbs. Tissue levels of transforming growth factor (TGF)-ß1, lysyl oxidase, periostin, and osteopontin are elevated. Fibroblastic cells isolated from HF hearts are predominantly MyoFb, proliferative or nonproliferative, with mature α-smooth muscle actin stress fibers. HF MyoFb express high levels of profibrotic cytokines and the TGF-ß1 pathway is activated. Inhibition of TGF-ß1 receptor kinase in HF MyoFb promotes dedifferentiation of MyoFb with loss of α-smooth muscle actin and depolymerization of stress fibers, and reduces the expression of profibrotic genes and cytokines levels to non-HF levels. CONCLUSION: MyoFb in end-stage HF have a variable degree of differentiation and retain the capacity to return to a less activated state, validating the potential for developing antifibrotic therapy targeting MyoFb.


Subject(s)
Fibroblasts , Heart Failure , Myocardium , Myofibroblasts , Cell Adhesion Molecules/analysis , Cell Differentiation , Cells, Cultured , Disease Progression , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis , Heart Failure/metabolism , Heart Failure/pathology , Humans , Immunohistochemistry , Myocardium/metabolism , Myocardium/pathology , Myofibroblasts/metabolism , Myofibroblasts/pathology , Osteopontin/analysis , Protein-Lysine 6-Oxidase/analysis , Signal Transduction , Transforming Growth Factor beta1/analysis , Ventricular Dysfunction/etiology , Ventricular Dysfunction/metabolism , Ventricular Dysfunction/pathology
5.
Sci Rep ; 7: 44770, 2017 03 20.
Article in English | MEDLINE | ID: mdl-28317892

ABSTRACT

The current trend for Magnetic Resonance Imaging points towards higher magnetic fields. Even though sensitivity and resolution are increased in stronger fields, T1 contrast is often reduced, and this represents a challenge for contrast agent design. Field-dependent measurements of relaxivity are thus important to characterize contrast agents. At present, the field-dependent curves of relaxivity are usually carried out in the field range of 0 T to 2 T, using fast field cycling relaxometers. Here, we employ a high-speed sample shuttling device to switch the magnetic fields experienced by the nuclei between virtually zero field, and the center of any commercial spectrometer. We apply this approach on rare-earth (mixed Gadolinium-Europium) vanadate nanoparticles, and obtain the dispersion curves from very low magnetic field up to 11.7 T. In contrast to the relaxivity profiles of Gd chelates, commonly used for clinical applications, which display a plateau and then a decrease for increasing magnetic fields, these nanoparticles provide maximum contrast enhancement for magnetic fields around 1-1.5 T. These field-dependent curves are fitted using the so-called Magnetic Particle (MP) model and the extracted parameters discussed as a function of particle size and composition. We finally comment on the new possibilities offered by this approach.

7.
ACS Nano ; 8(11): 11126-37, 2014 Nov 25.
Article in English | MEDLINE | ID: mdl-25290552

ABSTRACT

Collecting information on multiple pathophysiological parameters is essential for understanding complex pathologies, especially given the large interindividual variability. We report here multifunctional nanoparticles which are luminescent probes, oxidant sensors, and contrast agents in magnetic resonance imaging (MRI). Eu(3+) ions in an yttrium vanadate matrix have been demonstrated to emit strong, nonblinking, and stable luminescence. Time- and space-resolved optical oxidant detection is feasible after reversible photoreduction of Eu(3+) to Eu(2+) and reoxidation by oxidants, such as H2O2, leading to a modulation of the luminescence emission. The incorporation of paramagnetic Gd(3+) confers in addition proton relaxation enhancing properties to the system. We synthesized and characterized nanoparticles of either 5 or 30 nm diameter with compositions of GdVO4 and Gd0.6Eu0.4VO4. These particles retain the luminescence and oxidant detection properties of YVO4:Eu. Moreover, the proton relaxivity of GdVO4 and Gd0.6Eu0.4VO4 nanoparticles of 5 nm diameter is higher than that of the commercial Gd(3+) chelate compound Dotarem at 20 MHz. Nuclear magnetic resonance dispersion spectroscopy showed a relaxivity increase above 10 MHz. Complexometric titration indicated that rare-earth leaching is negligible. The 5 nm nanoparticles injected in mice were observed with MRI to concentrate in the liver and the bladder after 30 min. Thus, these multifunctional rare-earth vanadate nanoparticles pave the way for simultaneous optical and magnetic resonance detection, in particular, for in vivo localization evolution and reactive oxygen species detection in a broad range of physiological and pathophysiological conditions.


Subject(s)
Contrast Media/chemistry , Metals, Rare Earth/chemistry , Nanoparticles/chemistry , Oxidants/chemistry , Vanadium/chemistry , Animals , Luminescence , Magnetic Resonance Imaging , Mice , Microscopy, Electron, Transmission , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...