Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 9(8): e2105380, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35060365

ABSTRACT

Photoelectrochemical devices integrate the processes of light absorption, charge separation, and catalysis for chemical synthesis. The monolithic design is interesting for space applications, where weight and volume constraints predominate. Hindered gas bubble desorption and the lack of macroconvection processes in reduced gravitation, however, limit its application in space. Physico-chemical modifications of the electrode surface are required to induce gas bubble desorption and ensure continuous device operation. A detailed investigation of the electrocatalyst nanostructure design for light-assisted hydrogen production in microgravity environment is described. p-InP coated with a rhodium (Rh) electrocatalyst layer fabricated by shadow nanosphere lithography is used as a model device. Rh is deposited via physical vapor deposition (PVD) or photoelectrodeposition through a mask of polystyrene (PS) particles. It is observed that the PS sphere size and electrocatalyst deposition technique alter the electrode surface wettability significantly, controlling hydrogen gas bubble detachment and photocurrent-voltage characteristics. The highest, most stable current density of 37.8 mA cm-2 is achieved by depositing Rh via PVD through 784 nm sized PS particles. The increased hydrophilicity of the photoelectrode results in small gas bubble contact angles and weak frictional forces at the solid-gas interface which cause enhanced gas bubble detachment and enhanced device efficiency.

2.
Small ; 17(35): e2102023, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34322984

ABSTRACT

Bismuth tungstate (Bi2 WO6 ) thin film photoanode has exhibited an excellent photoelectrochemical (PEC) performance when the tungsten (W) concentration is increased during the fabrication. Plate-like Bi2 WO6 thin film with distinct particle sizes and surface area of different exposed facets are successfully prepared via hydrothermal reaction. The smaller particle size in conjunction with higher exposure extent of electron-dominated {010} crystal facet leads to a shorter electron transport pathway to the bulk surface, assuring a lower charge transfer resistance and thus minimal energy loss. In addition, it is proposed based on the results from conductive atomic force microscopy that higher W concentration plays a crucial role in facilitating the charge transport of the thin film. The "self-doped" of W in Bi2 WO6 will lead to the higher carrier density and improved conductivity. Thus, the variation in the W concentration during a synthesis can be served as a promising strategy for future W based photoanode design to achieve high photoactivity in water splitting application.

3.
ChemSusChem ; 12(9): 2022-2028, 2019 May 08.
Article in English | MEDLINE | ID: mdl-30246933

ABSTRACT

Solar water oxidation is considered as a promising method for efficient utilization of solar energy and bismuth vanadate (BiVO4 ) is a potential photoanode. Catalyst loading on BiVO4 is often used to tackle the limitations of charge recombination and sluggish kinetics. In this study, amorphous nickel oxide (NiOx ) is loaded onto Mo-doped BiVO4 by photochemical metal-organic deposition method. The resulting NiOx /Mo:BiVO4 photoanodes demonstrate a two-fold improvement in photocurrent density (2.44 mA cm-2 ) at 1.23 V versus reversible hydrogen electrode (RHE) compared with the uncatalyzed samples. After NiOx modification the charge-separation and charge-transfer efficiencies improve significantly across the entire potential range. It is further elucidated by open-circuit photovoltage (OCP), time-resolved-microwave conductivity (TRMC), and rapid-scan voltammetry (RSV) measurements that NiOx modification induces larger band bending and promotes efficient charge transfer on the surface of BiVO4 . This work provides insight into designing BiVO4 -catalyst assemblies by using a simple surface-modification route for efficient solar water oxidation.

SELECTION OF CITATIONS
SEARCH DETAIL
...