Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Cell Dev Biol ; 10: 1071243, 2022.
Article in English | MEDLINE | ID: mdl-36684445

ABSTRACT

In vitro investigation on human development, disease modeling, and drug discovery has been empowered by human induced pluripotent stem cell (hiPSC) technologies that form the foundation of precision medicine. Race and sex genetic backgrounds have become a major focus of many diseases modeling and drug response evaluation in the pharmaceutical industry. Here, we gathered data from major stem cell repositories to analyze the diversity with respect to ethnicity, sex, and disease types; and we also analyzed public datasets to unravel transcriptomics differences between samples of different ethnicities and sexes. We found a lack of diversity despite the large sample size of human induced pluripotent stem cells. In the ethnic comparison, the White group made up the majority of the banked hiPSCs. Similarly, for the organ/disease type and sex comparisons, the neural and male hiPSCs accounted for the majority of currently available hiPSCs. Bulk RNA-seq and single-cell transcriptomic analysis coupled with Machine Learning and Network Analysis revealed panels of gene features differently expressed in healthy hiPSCs and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) of different races and sexes. The data highlights the current ethnic and sex inequality in stem cell research and demonstrates the molecular biological diversity of hiPSCs and cardiomyocytes from different races and genders. We postulate that future efforts in stem cell biology, regenerative and precision medicine should be guided towards an inclusive, diverse repository reflecting the prevalence of diseases across racial and ethnic groups and the sexes, important for both common and rare disease modeling, drug screening, and cell therapeutics.

2.
Nat Aging ; 1(1): 73-86, 2021 01.
Article in English | MEDLINE | ID: mdl-33796866

ABSTRACT

Protein restricted (PR) diets promote health and longevity in many species. While the precise components of a PR diet that mediate the beneficial effects to longevity have not been defined, we recently showed that many metabolic effects of PR can be attributed to reduced dietary levels of the branched-chain amino acids (BCAAs) leucine, isoleucine, and valine. Here, we demonstrate that restricting dietary BCAAs increases the survival of two different progeroid mouse models, delays frailty and promotes the metabolic health of wild-type C57BL/6J mice when started in midlife, and leads to a 30% increase in lifespan and a reduction in frailty in male, but not female, wild-type mice when fed lifelong. Our results demonstrate that restricting dietary BCAAs can increase healthspan and longevity in mice, and suggest that reducing dietary BCAAs may hold potential as a translatable intervention to promote healthy aging.


Subject(s)
Amino Acids, Branched-Chain , Frailty , Female , Male , Animals , Mice , Amino Acids, Branched-Chain/metabolism , Longevity , Frailty/prevention & control , Health Promotion , Mice, Inbred C57BL , Diet
SELECTION OF CITATIONS
SEARCH DETAIL
...