Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Mol Genet ; 29(19): 3296-3311, 2020 11 25.
Article in English | MEDLINE | ID: mdl-32975579

ABSTRACT

Abnormalities of one carbon, glutathione and sulfide metabolisms have recently emerged as novel pathomechanisms in diseases with mitochondrial dysfunction. However, the mechanisms underlying these abnormalities are not clear. Also, we recently showed that sulfide oxidation is impaired in Coenzyme Q10 (CoQ10) deficiency. This finding leads us to hypothesize that the therapeutic effects of CoQ10, frequently administered to patients with primary or secondary mitochondrial dysfunction, might be due to its function as cofactor for sulfide:quinone oxidoreductase (SQOR), the first enzyme in the sulfide oxidation pathway. Here, using biased and unbiased approaches, we show that supraphysiological levels of CoQ10 induces an increase in the expression of SQOR in skin fibroblasts from control subjects and patients with mutations in Complex I subunits genes or CoQ biosynthetic genes. This increase of SQOR induces the downregulation of the cystathionine ß-synthase and cystathionine γ-lyase, two enzymes of the transsulfuration pathway, the subsequent downregulation of serine biosynthesis and the adaptation of other sulfide linked pathways, such as folate cycle, nucleotides metabolism and glutathione system. These metabolic changes are independent of the presence of sulfur aminoacids, are confirmed in mouse models, and are recapitulated by overexpression of SQOR, further proving that the metabolic effects of CoQ10 supplementation are mediated by the overexpression of SQOR. Our results contribute to a better understanding of how sulfide metabolism is integrated in one carbon metabolism and may explain some of the benefits of CoQ10 supplementation observed in mitochondrial diseases.


Subject(s)
Ataxia/pathology , Carbon/metabolism , Electron Transport Complex I/metabolism , Mitochondria/pathology , Mitochondrial Diseases/pathology , Muscle Weakness/pathology , Oxidoreductases Acting on Sulfur Group Donors/metabolism , Sulfides/metabolism , Ubiquinone/analogs & derivatives , Ubiquinone/deficiency , Animals , Ataxia/genetics , Ataxia/metabolism , Electron Transport , Electron Transport Complex I/genetics , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Glutathione/metabolism , Humans , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Muscle Weakness/genetics , Muscle Weakness/metabolism , Oxidoreductases Acting on Sulfur Group Donors/genetics , Skin/drug effects , Skin/metabolism , Skin/pathology , Transcriptome , Ubiquinone/genetics , Ubiquinone/metabolism , Ubiquinone/pharmacology , Vitamins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...