Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
1.
Br Poult Sci ; : 1-6, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828538

ABSTRACT

1. An experiment was conducted to determine the effect of the source of fat (soybean oil or tallow) on the ileal endogenous amino acid (EAA) losses in broilers.2. Three nitrogen (N)-free diets; a control diet with no added fat and test diets with 60 g/kg of either soybean oil or tallow were formulated. Titanium dioxide (5 g/kg) was added to all diets as an indigestible marker. Each diet was assigned to six replicate cages (eight birds per cage) from d 18 to 21 post-hatch. On d 21, the digesta were collected from the lower half of the ileum.3. The endogenous losses of nitrogen and amino acids (AA) were lower (p = 0.08; p = 0.001) in broilers fed diets with soybean oil or tallow, respectively, compared to those fed the diet with no fat. Source of fat had no influence (p > 0.05) on EAA losses.4. The most abundant AA in the ileal endogenous protein was glutamic acid, followed by aspartic acid, threonine, leucine, serine, valine and proline. In general, the concentrations of AA in the endogenous protein were lower (p < 0.05) with added fat. The exceptions were methionine, cysteine, proline and serine, which were unaffected. The effect of fat source on the AA contents of endogenous protein were inconsistent and differed depending on the AA.5. The inclusion of fats decreased EAA losses which implied they have beneficial effects beyond direct energy contribution. It can be proposed that the reduction of EAA flow may be an additional mechanism contributing to the extra-caloric effect of dietary fats.

2.
Poult Sci ; 103(5): 103574, 2024 May.
Article in English | MEDLINE | ID: mdl-38564832

ABSTRACT

The present study investigates the effects of replacing soybean meal (SBM) with either cottonseed meal (CSM) or fermented cottonseed meal (FCSM) on the productive performance, egg quality, blood biochemistry parameters, gut bacterial population, and small intestinal morphology of laying hens. A total of 648 Hy-Line W36 laying hens aged 40 weeks were randomly assigned to 9 treatments, with 6 replicates each and 12 birds per replicate. The feeding trial lasted 12 weeks. The treatments consisted of a control diet based on corn and SBM, as well as 8 experimental diets in which 7.5, 15, 22.5, and 30% of the SBM in the control diet was replaced with either CSM or FCSM. Laying hens fed diets with different levels of FCSM had higher egg production and egg mass than those fed with CSM diets at weeks 46 to 51 (P < 0.05). Diets containing FCSM also significantly improved the feed conversion ratio at weeks 40 to 45 and 46 to 51 (P < 0.05). Eggshell strength was significantly greater in birds fed diets containing FCSM than those fed other dietary treatments at 51 weeks of age (P < 0.05). Hens fed diets containing FCSM had higher calcium and lower cholesterol in serum than those on other diets (P < 0.05). Replacing SBM with FCSM decreased the egg yolk cholesterol content (P < 0.05). Additionally, feeding diets containing different levels of FCSM increased villus height and villus height to crypt depth in the jejunum (P < 0.05). Diets containing FCSM also reduced pH and coliform population in the ileum, and ceca and increased lactic acid bacteria count in the crop and ceca (P < 0.05). Overall, the present data showed that including FCSM in the diet of laying hens can positively affect productive performance compared to CSM. Moreover, substituting SBM with FCSM, can improve eggshell quality, promote gut health, and reduce egg yolk cholesterol concentration.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Chickens , Cottonseed Oil , Diet , Fermentation , Animals , Chickens/physiology , Chickens/growth & development , Animal Feed/analysis , Diet/veterinary , Female , Cottonseed Oil/administration & dosage , Animal Nutritional Physiological Phenomena/drug effects , Random Allocation , Gastrointestinal Microbiome/drug effects , Ovum/physiology , Ovum/drug effects , Dose-Response Relationship, Drug
3.
Animals (Basel) ; 14(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38396497

ABSTRACT

The influence of broiler age on the apparent metabolizable energy (AME) and nitrogen-corrected AME (AMEn) of meat and bone meal (MBM) was investigated. A corn-soy basal diet and an experimental diet wherein 300 g/kg of the basal diet was replaced (w/w) with MBM were developed. The diets, in pellet form, were fed to six replicate cages across six age groups, namely d 1 to 7, 8 to 14, 15 to 21, 22 to 28, 29 to 35 or 36 to 42 d post-hatch. Birds were fed either a starter diet from d 1-21 or a finisher diet from d 22-35. Basal and experimental diets were introduced on d 1, 8, 15, 22, 29 and 36 with 10 (d 1-7), 8 (d 8-14) and 6 (d 15-42) birds per replicate. Total collection of excreta was carried out during the last 4 d of each age period. A linear decrease (p < 0.001) in the retention of dry matter and nitrogen was observed with advancing age. The AMEn of MBM showed a linear increase (p < 0.05), rising from 12.56 MJ/kg during d 1-7 to 13.90 MJ/kg during d 29-35, followed by a decline to 13.41 MJ/kg during d 36-42. The current findings showed that the energy utilization of MBM increased with the advancing age of broilers. Age-dependent AMEn values of MBM may need to be considered when MBM is included in feed formulations.

4.
Animals (Basel) ; 14(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38396587

ABSTRACT

Grain legumes are fair sources of protein, amino acids and energy, and can be used as a replacement for soybean meal in poultry feed formulations as the soybean meal becomes short in supply and costly. However, a concern associated with the use of grain legumes in poultry feeding is the presence of antinutritional factors. The effective processing and utilisation of these grain legumes in poultry feeding are well documented. The current review focuses on four selected grain legumes (lupins [Lupinus albus and Lupinus angustifolius], field peas [Phaseolus vulgaris], faba beans [Vicia faba] and chickpeas [Cicer arietinum]) and their nutrient content, the presence of antinutritional factors, processing methods and feeding value, including updated data based on recent research findings.

5.
Br Poult Sci ; 65(1): 52-61, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37861101

ABSTRACT

1. The effects of limestone particle size on growth performance, gastrointestinal tract (GIT) traits, ileal morphology, duodenal gene expression of calbindin, apparent ileal digestibility coefficients (AIDC) of calcium (Ca) and phosphorus (P) and tibia characteristics in broilers and pullets were assessed in broilers and pullets. These birds have different growth rates and likely different responses to parameters, such as particle size.2. A total of 240 chicks aged one day, 120 Ross 308 female broilers, and 120 Hy-Line pullets were allocated randomly into four treatments in a 2 × 2 factorial arrangement with two bird types (broilers vs. pullets) and two limestone particle sizes (<0.5 mm versus 1-2 mm) to give six replicates containing 10 chicks in each from 1 to 21 d of age.3. Feed intake and weight gain were greater (P < 0.001) and feed per gain (FCR) was better (P < 0.001) in broilers compared to pullets from 1 to 21 d of age. Greater villus width (P < 0.01), villus height (P < 0.001) and crypt depth (P < 0.01) were seen for broilers compared to pullets.4. Pullets fed coarse Ca particles had higher calbindin gene expression at 21 d of age (P = 0.05). Both AIDC of Ca and P were higher (P < 0.001) in broilers compared to pullets. The AIDC of Ca from 0.463 to 0.516 was increased (P < 0.05) by feeding coarse limestone particles. A significant interaction was found between bird type and limestone particle size (P < 0.01), where pullets fed coarse Ca particles had higher bone P concentration in tibia than broilers.5. Broilers had better ileum absorptive capacity and growth performance compared to pullets. The AIDC of Ca and P was higher in broilers than in pullets. Increased limestone particle size elevated villus height, AIDC of Ca and concentration of P in the tibia.


Subject(s)
Calcium Carbonate , Calcium , Female , Animals , Chickens/genetics , Particle Size , Phosphorus , Calcium, Dietary , Ileum , Calbindins
6.
Anim Nutr ; 16: 11-22, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38131028

ABSTRACT

Standardized ileal digestibility coefficients (SIDC) of nitrogen (N) and amino acids (AA) in two protein sources (soybean meal [SBM] and canola meal [CM]) were investigated at six broiler ages (d 7, 14, 21, 28, 35, and 42). Two assay diets were formulated to contain either SBM (413 g/kg) or CM (553 g/kg) as the sole dietary AA source. Titanium dioxide (5 g/kg) was added as an indigestible marker. A total of 696 male broilers at 1 d old were allotted to 12 replicate cages per age group. Each assay diet was offered to birds for 4 d prior to the ileal digesta collection on d 7 (14 birds/cage), 14 (12 birds/cage), 21 (10 birds/cage), 28 (8 birds/cage), 35 (8 birds/cage) and 42 (6 birds/cage), respectively. The apparent digestibility coefficients were standardized using age-specific basal endogenous AA flows. In the SBM group, though the SIDC of N tended to be influenced (quadratic; P = 0.075) by age, no linear or quadratic response of age effect was observed on the average SIDC of indispensable (IAA) and total AA (TAA). An age effect (quadratic; P < 0.05) was observed on the average SIDC of dispensable AA (DAA) in SBM with the highest value recorded at d 7, followed by a decrease from d 14 to 28, which increased beyond d 35. The SIDC of some individual AA (Arg, Thr, Trp, Cys, Pro) were affected (P < 0.05 or P < 0.001) in a quadratic manner by age. In the CM, the SIDC of N, average SIDC of IAA, DAA and TAA were influenced (quadratic; P < 0.05 or P < 0.001) by age. The SIDC of N and average SIDC of DAA and TAA were higher from d 7 to 14, declined at d 21, and then increased beyond d 28. The average SIDC of IAA was low between d 7 and 28 and increased thereafter. The SIDC of individual AA were affected (linear or quadratic; P < 0.05 or P < 0.001) by different magnitudes by age. The age influence on the SIDC AA was variable, depending on the protein source and AA. The results demonstrate that age-specific SIDC AA data might need consideration in broiler feed formulations.

7.
Animals (Basel) ; 13(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37238019

ABSTRACT

Calcium (Ca) plays an essential role in poultry nutrition as 99% of Ca is located in birds' skeletal system. However, oversupply of Ca rather than deficiency of Ca is the current concern in commercial broiler diets. Calcium is an inexpensive dietary nutrient due to the cheap and abundant availability of limestone, the major Ca source; therefore, little attention was given to the oversupply of Ca in the past. The recent shift in the use of digestible P in broiler feed formulations has necessitated a closer look at digestible Ca, as Ca and P are interrelated in their absorption and postabsorptive utilisation. In this context, data on ileal digestibility of Ca and P in ingredients has been determined. Preliminary data on the digestible Ca and digestible P requirements for the different growth stages of broilers have also recently become available. The present review focusses on these recent advances in Ca nutrition. In addition, aspects of homeostatic control mechanisms, different Ca sources and factors influencing Ca digestibility in poultry are covered.

8.
Poult Sci ; 102(4): 102492, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36738562

ABSTRACT

An experiment was conducted to determine the digestible calcium (Ca) and digestible phosphorous (P) requirements of 25 to 35-day-old broiler chickens. Fifteen corn-soybean meal-based diets containing 2.0, 2.5, 3.0, 3.5, and 4.0 g/kg standardized ileal digestible (SID) Ca and 2.5, 3.5, and 4.5 g/kg SID P were fed to broilers from d 25 to 35 post-hatch. Each experimental diet was randomly allocated to 6 replicate cages (8 birds per cage). Body weight and feed intake were recorded, and the feed conversion ratio was calculated. On d 35, birds were euthanized to collect the ileal digesta, tibia, and carcass for the determination of ileal Ca, and P digestibility, concentrations of ash, Ca, and P in tibia and the retention of Ca and P in the carcass. Titanium dioxide (5.0 g/kg) was included in all diets as an indigestible indicator for the ileal digestibility measurement. Feed intake and total excreta output were measured during the last 4 d of the experimental period for the measurement of apparent total tract retention of Ca and P. Fixed effects of the experiment were dietary concentrations of SID Ca and SID P and their interaction. If the interaction or main effects were significant (P < 0.05), the parameter estimates for second-order response surface model (RSM) were determined using General Linear Model procedure of SAS. The maximum response was not predicted for most of the parameters (including growth performance and tibia) as the Ca effect was linear which indicated that the highest level of Ca employed in the study may have not been high enough. The requirement of dietary SID Ca for maximization of these parameters, therefore, depends on the dietary SID P concentration when the dietary SID Ca is within 2.0 to 4.0 g/kg. However, based on the factorial analysis, the highest weight gain was observed at 3.5 g/kg SID P and 3.5 g/kg SID Ca concentrations. Tibia ash was higher in birds fed 4.5 g/kg SID P and was unaffected by dietary SID Ca concentrations. However, based on overall findings, a combination of 3.5 g/kg SID P and 3.0-3.5 g/kg SID Ca may be recommended for the optimum tibia ash. The recommended SID Ca requirements (at 3.5 g/kg SID P) for weight gain (3.5 g/kg or 6.4 g/kg total Ca) and tibia ash (3.0-3.5 g/kg or 5.5-6.4 g/kg total Ca) are lower than the current Ca recommendations (7.8 g/kg total Ca equivalent to 4.25 g/kg SID Ca; Ross, 2019) for broiler finishers, suggesting possible excess of Ca in diets formulated based on the current recommendation.


Subject(s)
Calcium , Phosphorus, Dietary , Animals , Calcium/pharmacology , Phosphorus/pharmacology , Chickens/physiology , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Digestion , Diet/veterinary , Calcium, Dietary/pharmacology , Phosphorus, Dietary/pharmacology , Weight Gain
9.
Animals (Basel) ; 12(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36230265

ABSTRACT

The supply of conventional cereal grains, especially of maize, will be a significant constraint to the future growth of the poultry industry. Various alternative feed ingredients are being tested to replace maize in poultry diets. Barley (Hordeum vulgare L.) is one such feed ingredient, the use of which remains limited in poultry diets due to its low metabolisable energy, presence of anti-nutritive, soluble non-starch polysaccharides and consequent inter-cultivar variability. Differences in research methodologies used in published studies have also contributed to the inconsistent findings, preventing a good understanding of the nutritional value of barley for poultry. The importance of using accurate nutrient profiles, specifically metabolisable energy and digestible amino acids, for specific barley cultivars to formulate barley-based diets is emphasised. Nutritionists should also pay close attention to feed processing conditions tailored to the specific barley cultivars to increase the barley inclusion in poultry diets.

11.
Poult Sci ; 101(11): 102135, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36115253

ABSTRACT

An experiment was conducted to determine the digestible calcium (Ca) and digestible phosphorous (P) requirements of 11 to 24 d old broiler chickens. Eighteen corn-soybean meal-based diets containing 1.80, 2.35, 2.90, 3.45, 4.00, and 4.55 g/kg standardized ileal digestible (SID) Ca and 3.5, 4.5, and 5.5 g/kg SID P were fed to broilers from d 11 to 24. Each experimental diet was randomly allocated to six replicate cages (8 birds per cage). Body weight and feed amount were recorded at the start and end of the experiment and the feed conversion ratio was calculated. On d 24, birds were euthanized to collect ileal digesta, tibia, and carcass for the determination of digestible Ca and P, the concentration of ash, Ca and P in tibia and the retention of Ca and P in the carcass, respectively. Titanium dioxide (5 g/kg) was included in all diets as an indigestible indicator for apparent ileal digestibility measurement. Total excreta output was measured during the last 4 d of the experimental period for the measurement of apparent total tract retention of Ca and P. Fixed effects of the experiment were dietary concentrations of SID Ca and SID P and their interaction. If the interaction or main effect was significant (P < 0.05), the parameter estimate for second-order response surface model was determined using General Linear Model procedure of SAS. The weight gain of broiler growers was optimized at the SID P concentration of 3.5 g/kg and SID Ca concentrations between 2.35 and 4.00 g/kg. At 3.5 g/kg SID P concentration, the required SID Ca for maximum weight gain was determined to be 3.05 g/kg, which corresponded to SID Ca to SID P ratios of 0.87. The concentration of SID Ca that maximized tibia ash at 3.5 g/kg SID P was 3.69 g/kg, which corresponded to SID Ca to SID P ratio of 1.05. Maximizing bone ash requires more Ca than maximizing weight gain. Carcass Ca and P retention were reflective of total tract Ca and P retention values. The estimated SID Ca requirements (at 3.5 g/kg SID P) for both maximized weight gain (3.05 g/kg or 6.11 g/kg total Ca) and bone ash (3.69 g/kg or 7.28 g/kg total Ca) are lower than the current Ca recommendation (8.70 g/kg total Ca equivalent to 4.03 g/kg SID Ca; Ross, 2019) for broiler growers, indicating possible oversupply of Ca in diets formulated based on the current recommendation.


Subject(s)
Phosphorus, Dietary , Animals , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Calcium , Calcium, Dietary , Chickens/physiology , Diet/veterinary , Digestion/physiology , Phosphorus , Weight Gain
12.
Poult Sci ; 101(9): 102016, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35901647

ABSTRACT

The influence of wet-heating (WH) and expansion temperature (ET), and autoclaving time (AT) on the nitrogen-corrected apparent metabolizable energy (AMEn) and standardized ileal digestibility (SID) of AA in full-fat soybeans (FFSB) for broilers was examined in 2 experiments. The AMEn and SID AA of FFSB were determined by the difference and direct methods, respectively. In Experiment 1, raw FFSB (K0) were either treated by WH at 80°C for 1 min and expanded at 115°C (K1-115) or 125°C (K1-125), WH at 100°C for 6 min and expanded at 115°C (K2-115) or 125°C (K2-125), or WH at 100°C for 16 min and expanded at 115°C (K3-115) or 125°C (K3-125). Wet-heating and ET significantly (P < 0.001) increased the AMEn in FFSB. Among heat-treated FFSB, K1-115 and K1-125 resulted in the lowest and highest AMEn values, respectively, with all samples wet-heated at 100°C being intermediate. The K3-125 had AMEn values similar (P > 0.05) to K1-125. Among heat-treated FFSB, the highest average SID AA was recorded for K3-125. In Experiment 2, K3-125 from experiment 1 was divided into 9 batches and autoclaved at 110°C for 15 (Z1), 30 (Z2), 45 (Z3), 60 (Z4), 120 (Z5), 180 (Z6), 240 (Z7), 300 (Z8), and 360 (Z9) min. A quadratic (P < 0.01) pattern was observed for the effects of AT on AMEn. The AMEn was unaffected until 300 min AT and then declined at 360 min. The AT quadratically (P < 0.001) affected the average SID AA where the SID increased from K3-125 to Z1, plateaued to Z5, and then declined to Z9. In conclusion, the results demonstrated that WH at 100°C for 16 min followed by expansion at 125°C as the most optimal wet-heating and expansion processing, associated with the highest SID AA. Autoclaving at 110°C for 30 min enhanced energy utilization and AA digestibility in FFSB, suggesting that further advantages may be achieved by short-time autoclaving of previously wet-heated and expanded FFSB samples.


Subject(s)
Glycine max , Animals , Amino Acids/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Chickens/metabolism , Diet/veterinary , Digestion , Heating , Ileum/metabolism , Glycine max/chemistry , Temperature
13.
Poult Sci ; 101(7): 101948, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35679675

ABSTRACT

Two experiments were conducted to investigate the influence of age and dietary cellulose levels on the ileal endogenous energy losses (IEEL) in broiler chickens. In experiment 1, a glucose-based purified diet was used to determine the IEEL. Titanium dioxide (5.0 g/kg) was added to the diet as an indigestible marker. Six groups of broiler chickens aged 1 to 7, 8 to 14, 15 to 21, 22 to 28, 29 to 35 or 36 to 42 d posthatch, were utilized. With the exception of 1-7 d, the birds were fed a starter (d 1-21) and/or a finisher (d 22-35) diet before the experimental diet was introduced. The diet was randomly allocated to 6 replicate cages, and the number of birds per cage was 12 (d 1-7), 10 (d 8-14), and 8 (d 15-42). The ileal digesta were collected at the last day of each week (d 7, 14, 21, 28, 35, and 42). Bird age had no effect (P > 0.05) on the IEEL estimates. The IEEL estimates ranged from 263 to 316 kcal/kg dry matter intake (DMI) during weeks 1 to 6. In Experiment 2, 4 glucose-based purified diets were developed using 0, 25, 50 and 75 g/kg cellulose. Titanium dioxide (5.0 g/kg) was added to the diets as an indigestible marker. The diets were randomly allocated to 6 replicate cages (8 birds per cage) and fed from 18 to 21 d posthatch and, ileal digesta were collected on d 21. The IEEL estimates of broiler chickens at 21 d of age showed a quadratic response (P < 0.05) to increasing cellulose contents. The lowest IEEL (88 kcal/kg DMI) was recorded for the diet without cellulose and the highest IEEL (430 kcal/kg DMI) was observed for the diet with 75 g/kg cellulose. Overall, the present findings confirmed that the IEEL in broiler chickens can be quantified by feeding a glucose-based purified diet. Broiler age had no influence on the IEEL estimates. The IEEL increased with increasing dietary cellulose contents and the IEEL determined using a purified diet without cellulose represents a better estimate of IEEL.


Subject(s)
Animal Nutritional Physiological Phenomena , Chickens , Animal Feed/analysis , Animals , Cellulose , Chickens/physiology , Diet/veterinary , Digestion/physiology , Glucose , Ileum
14.
Animals (Basel) ; 12(8)2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35454267

ABSTRACT

This study investigated the influence of short-term and long-term conditioning and expansion on the nitrogen-corrected apparent metabolizable energy (AMEn) and standardized ileal digestibility (SID) of amino acids (AA) in full-fat soybeans (FFSB) for broilers. A batch of raw soybeans was used to manufacture 10 FFSB products (T0 to T9) by applying various combinations of conditioning and expansion. The AMEn and SID AA of FFSB were determined by difference and direct methods, respectively. All heat treatments increased (p < 0.001) the AMEn compared to raw FFSB. The sample subjected to long-term conditioning at 100 °C for 6 min and expansion at 18 kWh/t (T5) supported 3.88 MJ/kg higher AMEn than the raw FFSB. Raw FFSB had the poorest (p < 0.05) AA digestibility. Among the heat-treated samples, the highest (p < 0.05) SID AA was recorded for T5. The results demonstrated that the long-term conditioning of FFSB at 100 °C for 6 min prior to expansion with 18 kWh/t specific energy input enhanced metabolizable energy and SID AA. Further increases in conditioning time from 6 to 9 min or expansion of specific energy input from 18 to 28 kWh/t did not yield additional benefits to energy utilization and AA digestibility of FFSB.

15.
J Anim Sci ; 100(2)2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35137139

ABSTRACT

The effect of a novel consensus bacterial 6-phytase variant (PhyG) on apparent ileal digestibility (AID) of amino acids (AA) and phosphorus (P) utilization in young broilers when added to diets with high phytate-P (PP) content without added inorganic phosphate (Pi) and deficient in digestible (dig) AA and metabolizable energy (ME) was investigated. A total of 256 Ross 308 male broilers were assigned to 4 treatments (8 birds/cage, 8 cages/treatment) in a completely randomized design. Treatments comprised a positive control (PC, 2,975 kcal/kg ME, 3.7 g/kg dig P, 2.83 g/kg PP, 8.4 g/kg Ca, 10.6 g/kg dig lysine), a negative control (NC) without added Pi (ME -68 kcal/kg, crude protein -10 g/kg, dig AA -0.1 to -0.4 g/kg, Ca -2.0 g/kg, dig P -2.2 g/kg, Na -0.4 g/kg vs. PC), and NC plus 500 or 1,000 FTU/kg of PhyG. Test diets were corn/soy/rapeseed-meal/rice-bran-based and fed from 5 to 15 d of age. Ileal digesta and tibias were collected on day 15. Excreta was collected during days 12 to 15 to determine P retention. The NC (vs. PC) reduced (P < 0.05) P retention (-10.4% units), tibia ash (-14.3% units), weight gain (-109 g), feed intake (-82 g) and increased FCR (from 1.199 to 1.504), confirming that the NC was extremely deficient in nutrients and energy. Phytase addition to the NC linearly (P < 0.001) improved performance, but did not fully recover it to the level of the PC due to the severe nutrients/energy reduction in NC. Phytase linearly increased P retention (P < 0.001), tibia ash (P < 0.001), AID of dry matter (P < 0.05), nitrogen (P < 0.01), gross energy (P < 0.05), and all 17 individual AA (P < 0.01). At 1,000 FTU/kg, phytase increased (P < 0.05) P retention vs. PC and NC (+14.5 and +24.9% units, respectively) and increased tibia ash vs. NC (+13.8% units), equivalent to PC. The NC decreased AID of Cys, Gly, Thr, and Met vs. PC (P < 0.05). At 1,000 FTU/kg, phytase increased AID of all 17 AA vs. NC (P < 0.01), equivalent to PC. At 1,000 FTU/kg, AID AA responses (above NC) ranged from +4.5% (Met) to +15.0% (Cys), being maximal for essential Thr (+10.4%) and Val (+8.2%) and non-essential Cys (+15.0%) and Gly (+10.4%). The results highlight the efficacy of PhyG at a dose level of 500 to 1,000 FTU/kg in young broilers for improving the ileal digestibility of nitrogen, AA, and energy alongside P retention and tibia ash. The performance data emphasize the need to consider digestible nutrient intake as a response variable in exogenous enzyme studies.


Microbial phytase is widely used in commercial broiler diets to improve digestion of phosphorus (P) and reduce its excretion into the environment. Phytase improves the digestion of phosphorus and other nutrients including amino acids (AA). This study evaluated the effect of a novel consensus bacterial 6-phytase variant (PhyG) added to a nutrient-reduced diet without any added inorganic P on the digestibility of nutrients including P and AA in the ileum of young broilers. Effects on P retention and bone mineralization were also assessed. Compared to an unsupplemented negative control diet, PhyG improved growth performance, P retention, bone mineralization (tibia ash), digestibility of dry matter, nitrogen, gross energy, and all 17 individual AA during 5 to 15 d post-hatch, in a dose-dependent manner (dose range 0 to 1,000 phytase units [FTU] per kilogram of feed). For some AA, the increases in digestibility with PhyG at 1,000 FTU/kg were substantial (cysteine: +15.0%, threonine:+10.4%), and for all AA were equivalent to the responses produced by a nutritionally adequate positive control (unsupplemented) diet. The results demonstrate the efficacy of PhyG to improve AA digestibility alongside growth performance, P retention, and bone mineralization in young broilers.


Subject(s)
6-Phytase , 6-Phytase/pharmacology , Amino Acids/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Chickens/physiology , Diet/veterinary , Dietary Supplements , Digestion , Male , Phosphorus/pharmacology , Tibia/metabolism
16.
Poult Sci ; 101(3): 101666, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35101685

ABSTRACT

Data from 13 datasets from 4 trials on the effect of a novel consensus bacterial 6-phytase variant (PhyG) on the apparent ileal digestibility (AID) of amino acids (AA) in broilers were used to model AID AA responses. The datasets were obtained from 3 trial locations (New Zealand, Australia and United States) and collectively incorporated variations in diet composition (feedstuff composition, phytate-P (PP) level, limestone solubility), feed form (mash or pellet), bird genetics (strain), and age at sampling (11-35 d of age). In total, 384 observations were analyzed. First, the relationships between AID of AA (as coefficients) and increasing phytase dose level from 0 to 4,000 FTU/kg were evaluated across all datasets using exponential curve fitting. Second, the percentage unit change in AID of AA at each phytase dose level from baseline (basal diet [BD] without phytase) was calculated separately for each dataset and the data then modeled together using exponential curve fitting. The model-predicted mean coefficient of AID of total AA in basal diets was 0.76 (range 0.56 [Cys] to 0.83 [Glu]), which was increased by PhyG to 0.80 and 0.81 at 2,000 and 4,000 FTU/kg, respectively. Exponential increases in the percentage unit improvement in AID of 18 individual and of total AA with increasing phytase dose level were evident (P < 0.05). Improvements (vs. BD) at 2,000 FTU/kg and 4,000 FTU/kg, respectively, were greatest for Cys (+9.2 and +11.0% units), Met (after deduction of synthetic Met, +8.4 and +9.0% units), and Thr (after deduction of synthetic Thr, +6.2 and +7.3% units). The data demonstrated consistent improvements in the AID of AA by the phytase. The modeling results generated from data gathered from birds sampled at different ages and from different dietary settings with correction of synthetic AA for Lys, Met, Thr, and Trp, enabled a more accurate prediction of the digestible AA contribution from the diet by this novel phytase. This will allow diet-specific AA matrix recommendations to be made in commercial feed formulations.


Subject(s)
6-Phytase , 6-Phytase/metabolism , Amino Acids/metabolism , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Chickens/physiology , Dietary Supplements , Digestion
17.
Anim Nutr ; 8(1): 61-70, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34977376

ABSTRACT

The influence of the method of barley inclusion (fine, coarse and whole barley) in a wheat-based diet and protease supplementation (0 and 0.20 g/kg) on growth performance, nutrient utilisation and gastrointestinal tract development of broilers (d 1 to 21) was evaluated in a 3 × 2 factorial arrangement. Whole barley (WB) grains were ground in a hammer mill to pass through the screen sizes of 2.5 and 8.0 mm to achieve fine (FB) and coarse (CB) barley particle sizes, respectively. A total of 288, one-day-old male broilers were allotted to 36 cages (6 cages/treatment; 8 birds/cage). There was no significant (P > 0.05) interaction between barley inclusion method and protease for any growth performance or nutrient utilisation parameters. Birds fed diets containing CB and WB showed higher (P < 0.05) weight gain, and digestibility of dry matter, nitrogen, calcium, gross energy, and ileal digestible energy compared to those fed FB diets. Compared to the birds fed FB diets, feed per gain was lower (P < 0.05) in birds fed diets made of WB. Fat digestibility of the birds fed CB was higher (P < 0.05) than those fed FB and WB birds. Compared to FB and CB diets, inclusion of WB resulted in heavier (P < 0.05) gizzards but reduced (P < 0.05) gizzard pH. Supplemental protease, however, had no effects (P > 0.05) on growth performance and nutrient utilisation, most likely due to the well balanced digestible amino acids and high inherent digestibility of protein in the basal diet, and/or the presence of exogenous carbohydrase and phytase. In conclusion, the present results showed that the inclusion of coarsely ground and whole barley in a wheat-based diet can enhance nutrient and energy utilisation and is beneficial to the growth performance of young broilers.

18.
Poult Sci ; 100(11): 101466, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34628287

ABSTRACT

Standardized ileal digestibility coefficients (SIDC) of nitrogen (N) and amino acids (AA) in wheat and sorghum at 6 different ages (d 7, 14, 21, 28, 35, and 42) of broilers were determined. Two assay diets were formulated to contain 93.8% of each grain as the sole source of AA in the diet. Titanium dioxide (0.5%) was added as an indigestible marker. Each assay diet was fed to 6 replicate cages housing 14 (d 7), 12 (d 14), 10 (d 21), 8 (d 28), 8 (d 35), and 6 (d 42) birds per cage for 4 d prior to ileal digesta collection. The apparent ileal digestibility coefficients (AIDC) were standardized by using the age-appropriate basal endogenous AA losses. In the case of wheat, AIDC of N and all AA increased (linear or quadratic, P < 0.05 to 0.001) with advancing age. No age effect was noticed on the SIDC of N, average of indispensable (IAA) and dispensable AA (DAA), though the average of total AA (TAA) tended (linear, P = 0.09) to increase as birds grew older. In sorghum, the AIDC of N, average of IAA and DAA were unaffected (P > 0.05) by age. The SIDC of N, average SIDC of IAA, DAA and TAA were higher at d 7, reduced at d 14 and then plateaued. Among the IAA, the SIDC of Arg, His, Ile, Leu, Lys, Thr, Val, and the SIDC of all individual DAA (except Cys) decreased with age (linear or quadratic, P < 0.05 to 0.001) with higher values at d 7. The higher SIDC values determined at d 7 were due to higher EAA losses during wk 1. The results showed that broiler age influences AA digestibility and this may need be considered in practical feed formulations. The age effect is variable depending on the grain type and specific AA.


Subject(s)
Sorghum , Triticum , Amino Acids/pharmacology , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Chickens , Diet/veterinary , Digestion , Ileum
19.
Animals (Basel) ; 11(10)2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34679817

ABSTRACT

Because the intestine is the primary nutrient supply organ, early development of digestive function in newly hatched chick will enable it to better utilize nutrients, grow efficiently, and achieve the genetic potential of contemporary broilers. Published data on the growth and digestive function of the gastrointestinal tract in neonatal poultry were reviewed. Several potential strategies to improve digestive tract growth and function in newly hatched chick are available and the options include breeder nutrition, in ovo feeding, early access to feed and water, special pre-starter diets, judicious use of feed additives, and early programming.

20.
Poult Sci ; 100(11): 101439, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34607153

ABSTRACT

An experiment was conducted to determine the digestible calcium (Ca) and digestible phosphorous (P) requirements of 10-day-old broiler chickens. Fifteen corn-soybean meal-based diets containing 3.3, 3.9, 4.4, 5.0, and 5.5 g/kg standardized ileal digestible (SID) Ca and 4.0, 5.0, and 6.0 g/kg SID P was fed to broilers from d 1 to 10. Each experimental diet was randomly allocated to 6 replicate cages (12 birds per cage). Body weight and feed intake were recorded at the start and end of the experiment and the feed conversion ratio was calculated. On d 10, birds were euthanized to collect ileal digesta, toes and tibia for the determination of digestible Ca and P, toe ash concentration and the concentrations of ash, Ca, and P in tibia. Titanium dioxide (5 g/kg) was included in all diets as an indigestible indicator for apparent ileal digestibility measurements. Total excreta were collected from d 1 to 10 for the measurement of total tract retention of Ca and P. Fixed effects of the experiment were dietary concentrations of SID Ca and SID P and their interaction. If the interaction or main effects were significant (P < 0.05), the parameter estimates for second-order response surface model were determined using General Linear Model procedure of SAS software. The growth performance, bone mineralization and mineral utilization of broiler starters were found to be optimized at 5 g/kg SID P concentration. Required SID Ca for maximum weight gain and bone mineralization was determined to be 3.32 and 4.36 to 4.78 g/kg, respectively, at 5 g/kg SID P concentration, which correspond to SID Ca to SID P ratios of 0.66 and 0.87 to 0.96, respectively. The estimated SID Ca requirement for weight gain is lower than the current Ca recommendation (9.6 g/kg total Ca or 4.4 g/kg SID Ca) for broiler starters. However, bone mineralization is maximized around the current total Ca recommendation at 8.9 to 9.8 g/kg (4.36-4.78 g/kg SID Ca) and indicates that bone mineralization requires more Ca than growth performance.


Subject(s)
Chickens , Phosphorus, Dietary , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Animals , Calcium , Calcium, Dietary , Diet/veterinary , Digestion , Phosphorus
SELECTION OF CITATIONS
SEARCH DETAIL
...