Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 16(17): 8650-8660, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38618947

ABSTRACT

Driven by their excellent conductivity and redox properties, metal tellurides (MTes) are increasingly capturing the spotlight across various fields. These properties position MTes as favorable materials for next-generation electrochemical devices. Herein, we introduce a novel, self-sustained approach to creating a yolk-shelled electrode material. Our process begins with a metal-organic framework, specifically a CoFe-layered double hydroxide-zeolitic imidazolate framework67 (ZIF67) yolk-shelled structure (CFLDH-ZIF67). This structure is synthesized in a single step and transformed into CuCoLDH nanocages. The resulting CuCoFeLDH-CuCoLDH yolk-shelled microrods (CCFLDH-CCLDHYSMRs) are formed through an ion-exchange reaction. These are then converted into CuCoFeTe-CuCoTe yolk-shelled microrods (CCFT-CCTYSMRs) by a tellurization reaction. Benefiting from their structural and compositional advantages, the CCFT-CCTYSMR electrode demonstrates superior performance. It exhibits a fabulous capacity of 1512 C g-1 and maintains an impressive 84.45% capacity retention at 45 A g-1. Additionally, it shows a remarkable capacity retention of 91.86% after 10 000 cycles. A significant achievement of this research is the development of an activated carbon (AC)||CCFT-CCTYSMR hybrid supercapacitor. This supercapacitor achieves a good energy density (Eden) of 63.46 W h kg-1 at a power density (Pden) of 803.80 W kg-1 and retains 88.95% of its capacity after 10 000 cycles. These results highlight the potential of telluride-based materials in advanced energy storage applications, marking a step forward in the development of high-energy, long-life hybrid supercapacitors.

2.
Front Microbiol ; 13: 947550, 2022.
Article in English | MEDLINE | ID: mdl-35992647

ABSTRACT

Microbial electrosynthesis (MES) from CO2 provides chemicals and fuels by driving the metabolism of microorganisms with electrons from cathodes in bioelectrochemical systems. These microorganisms are usually strictly anaerobic. At the same time, the anode reaction of bioelectrochemical systems is almost exclusively water splitting through the oxygen evolution reaction (OER). This creates a dilemma for MES development and engineering. Oxygen penetration to the cathode has to be excluded to avoid toxicity and efficiency losses while assuring low resistance. We show that this dilemma derives a strong need to identify novel reactor designs when using the OER as an anode reaction or to fully replace OER with alternative oxidation reactions.

3.
Rep Pract Oncol Radiother ; 18(2): 112-6, 2012.
Article in English | MEDLINE | ID: mdl-24416537

ABSTRACT

AIM: Stepping source in brachytherapy systems is used to treat a target lesion longer than the effective treatment length of the source. Cancerous lesions in the cervix, esophagus and rectum are examples of such a target lesion. BACKGROUND: In this study, the stepping source of a GZP6 afterloading intracavitary brachytherapy unit was simulated using Monte Carlo (MC) simulation and the results were used for the validation of the GZP6 treatment planning system (TPS). MATERIALS AND METHODS: The stepping source was simulated using MCNPX Monte Carlo code. Dose distributions in the longitudinal plane were obtained by using a matrix shift method for esophageal tumor lengths of 8 and 10 cm. A mesh tally has been employed for the absorbed dose calculation in a cylindrical water phantom. A total of 5 × 10(8) photon histories were scored and the MC statistical error obtained was at the range of 0.008-3.5%, an average of 0.2%. RESULTS: The acquired MC and TPS isodose curves were compared and it was shown that the dose distributions in the longitudinal plane were relatively coincidental. In the transverse direction, a maximum dose difference of 7% and 5% was observed for tumor lengths of 8 and 10 cm, respectively. CONCLUSION: Considering that the certified source activity is given with ±10% uncertainty, the obtained difference is reasonable. It can be concluded that the accuracy of the dose distributions produced by GZP6 TPS for the stepping source is acceptable for its clinical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...