Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cardiovasc Med ; 9: 1040053, 2022.
Article in English | MEDLINE | ID: mdl-36684599

ABSTRACT

Abdominal aortic aneurysm (AAA) is one of the leading causes of death worldwide. AAAs often remain asymptomatic until they are either close to rupturing or they cause pressure to the spine and/or other organs. Fast progression has been linked to future clinical outcomes. Therefore, a reliable and efficient system to quantify geometric properties and growth will enable better clinical prognoses for aneurysms. Different imaging systems can be used to locate and characterize an aneurysm; computed tomography (CT) is the modality of choice in many clinical centers to monitor later stages of the disease and plan surgical treatment. The lack of accurate and automated techniques to segment the outer wall and lumen of the aneurysm results in either simplified measurements that focus on few salient features or time-consuming segmentation affected by high inter- and intra-operator variability. To overcome these limitations, we propose a model for segmenting AAA tissues automatically by using a trained deep learning-based approach. The model is composed of three different steps starting with the extraction of the aorta and iliac arteries followed by the detection of the lumen and other AAA tissues. The results of the automated segmentation demonstrate very good agreement when compared to manual segmentation performed by an expert.

2.
Med Eng Phys ; 96: 71-80, 2021 10.
Article in English | MEDLINE | ID: mdl-34565555

ABSTRACT

Coronary artery disease is the leading cause of mortality worldwide. Almost seven million deaths are reported each year due to coronary disease. Coronary artery events in the adult are primarily due to atherosclerosis with seventy-five percent of the related mortality caused by plaque rupture. Despite significant progress made to improve intravascular imaging of coronary arteries, there is still a large gap between clinical needs and technical developments. The goal of this review is to identify the gap elements between clinical knowledge and recent advances in the domain of medical image analysis. Efficient image analysis computational models should be designed with respect to the exact clinical needs, and detailed features of the tissues under review. In this review, we discuss the detailed clinical features of the intracoronary plaques for mathematical and biomedical researchers. We emphasize the importance of integrating this clinical knowledge validated by clinicians to investigate the potentially effective models for proper features efficiency in the scope of leveraging the state-of-the-art of coronary image analyses.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Plaque, Atherosclerotic , Adult , Coronary Artery Disease/diagnostic imaging , Coronary Vessels/diagnostic imaging , Humans , Tomography, Optical Coherence , Ultrasonography, Interventional
3.
Med Phys ; 48(7): 3511-3524, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33914917

ABSTRACT

PURPOSE: Coronary artery events are mainly associated with atherosclerosis in adult population, which is recognized as accumulation of plaques in arterial wall tissues. Optical Coherence Tomography (OCT) is a light-based imaging system used in cardiology to analyze intracoronary tissue layers and pathological formations including plaque accumulation. This state-of-the-art catheter-based imaging system provides intracoronary cross-sectional images with high resolution of 10-15 µm. But interpretation of the acquired images is operator dependent, which is not only very time-consuming but also highly error prone from one observer to another. An automatic and accurate coronary plaque tagging using OCT image post-processing can contribute to wide adoption of the OCT system and reducing the diagnostic error rate. METHOD: In this study, we propose a combination of spatial pyramid pooling module with dilated convolutions for semantic segmentation to extract atherosclerotic tissues regardless of their types and training a sparse auto-encoder to reconstruct the input features and enlarge the training data as well as plaque type characterization in OCT images. RESULTS: The results demonstrate high precision of the proposed model with reduced computational complexity, which can be appropriate for real-time analysis of OCT images. At each step of the work, measured accuracy, sensitivity, specificity of more than 93% demonstrate high performance of the model. CONCLUSION: The main focus of this study is atherosclerotic tissue characterization using OCT imaging. This contributes to wide adoption of the OCT imaging system by providing clinicians with a fully automatic interpretation of various atherosclerotic tissues. Future studies will be focused on analyzing atherosclerotic vulnerable plaques, those coronary plaques which are prone to rupture.


Subject(s)
Coronary Artery Disease , Deep Learning , Plaque, Atherosclerotic , Adult , Coronary Artery Disease/diagnostic imaging , Coronary Vessels/diagnostic imaging , Cross-Sectional Studies , Humans , Plaque, Atherosclerotic/diagnostic imaging , Tomography, Optical Coherence
4.
J Biophotonics ; 13(1): e201900112, 2020 01.
Article in English | MEDLINE | ID: mdl-31423740

ABSTRACT

Intravascular optical coherence tomography (IV-OCT) is a light-based imaging modality with high resolution, which employs near-infrared light to provide tomographic intracoronary images. Morbidity caused by coronary heart disease is a substantial cause of acute coronary syndrome and sudden cardiac death. The most common intracoronay complications caused by coronary artery disease are intimal hyperplasia, calcification, fibrosis, neovascularization and macrophage accumulation, which require efficient prevention strategies. OCT can provide discriminative information of the intracoronary tissues, which can be used to train a robust fully automatic tissue characterization model based on deep learning. In this study, we aimed to design a diagnostic model of coronary artery lesions. Particularly, we trained a random forest using convolutional neural network features to distinguish between normal and diseased arterial wall structure. Then, based on the arterial wall structure, fully convolutional network is designed to extract the tissue layers in normal cases, and pathological tissues regardless of lesion type in pathological cases. Then, the type of the lesions can be characterized with high precision using our previous model. The results demonstrate the robustness of the model with the approximate overall accuracy up to 90%.


Subject(s)
Coronary Artery Disease , Mucocutaneous Lymph Node Syndrome , Coronary Artery Disease/diagnostic imaging , Coronary Vessels/diagnostic imaging , Humans , Mucocutaneous Lymph Node Syndrome/diagnostic imaging , Tomography, Optical Coherence
5.
IEEE J Biomed Health Inform ; 23(3): 931-941, 2019 05.
Article in English | MEDLINE | ID: mdl-30387755

ABSTRACT

Intra-slice motion correction is an important step for analyzing volume variations and pathological formations from intravascular imaging. Optical coherence tomography (OCT) has been recently introduced for intravascular imaging and assessment of coronary artery disease. Two-dimensional (2-D) cross-sectional OCT images of coronary arteries play a crucial role to characterize the internal structure of the tissues. Adjacent images could be compounded; however, they might not fully match due to motion, which is a major hurdle for analyzing longitudinally each tissue in 3-D. The aim of this study is to develop a robust tissue-matching-based motion correction approach from a sequence of 2-D intracoronary OCT images. Our motion correction technique is based on the correlation between deep features obtained from a convolutional neural network (CNN) for each frame of a sequence. The optimal transformation of each frame is obtained by maximizing the similarity between the tissues of reference and moving frames. The results show a good alignment of the tissues after applying CNN features and determining the transformation parameters.


Subject(s)
Coronary Vessels/diagnostic imaging , Deep Learning , Image Processing, Computer-Assisted/methods , Tomography, Optical Coherence/methods , Algorithms , Humans , Movement/physiology , Ultrasonography, Interventional
6.
Biomed Opt Express ; 9(10): 4936-4960, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30319913

ABSTRACT

Coronary artery disease is the number one health hazard leading to the pathological formations in coronary artery tissues. In severe cases, they can lead to myocardial infarction and sudden death. Optical Coherence Tomography (OCT) is an interferometric imaging modality, which has been recently used in cardiology to characterize coronary artery tissues providing high resolution ranging from 10 to 20 µm. In this study, we investigate different deep learning models for robust tissue characterization to learn the various intracoronary pathological formations caused by Kawasaki disease (KD) from OCT imaging. The experiments are performed on 33 retrospective cases comprising of pullbacks of intracoronary cross-sectional images obtained from different pediatric patients with KD. Our approach evaluates deep features computed from three different pre-trained convolutional networks. Then, a majority voting approach is applied to provide the final classification result. The results demonstrate high values of accuracy, sensitivity, and specificity for each tissue (up to 0.99 ± 0.01). Hence, deep learning models and especially, majority voting method are robust for automatic interpretation of the OCT images.

7.
Biomed Opt Express ; 8(2): 1203-1220, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28271012

ABSTRACT

Kawasaki disease (KD) is an acute childhood disease complicated by coronary artery aneurysms, intima thickening, thrombi, stenosis, lamellar calcifications, and disappearance of the media border. Automatic classification of the coronary artery layers (intima, media, and scar features) is important for analyzing optical coherence tomography (OCT) images recorded in pediatric patients. OCT has been known as an intracoronary imaging modality using near-infrared light which has recently been used to image the inner coronary artery tissues of pediatric patients, providing high spatial resolution (ranging from 10 to 20 µm). This study aims to develop a robust and fully automated tissue classification method by using the convolutional neural networks (CNNs) as feature extractor and comparing the predictions of three state-of-the-art classifiers, CNN, random forest (RF), and support vector machine (SVM). The results show the robustness of CNN as the feature extractor and random forest as the classifier with classification rate up to 96%, especially to characterize the second layer of coronary arteries (media), which is a very thin layer and it is challenging to be recognized and specified from other tissues.

SELECTION OF CITATIONS
SEARCH DETAIL
...