Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Circuits Syst ; 17(6): 1237-1256, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37956015

ABSTRACT

This paper presents an innovative, minimally invasive, battery-free, wireless, peripheral nervous system (PNS) neural interface, which seamlessly integrates a millimeter-scale, fascicle-selective integrated circuit (IC) with extraneural recording and stimulating channels. The system also incorporates a wearable interrogator equipped with integrated machine-learning capabilities. This PNS interface is specifically tailored for adaptive neuromodulation therapy, targeting individuals with paralysis, amputation, or chronic medical conditions. By employing a neural pathway classifier and temporal interference stimulation, the proposed interface achieves precise deep fascicle selectivity for recording and stimulation without the need for nerve penetration or compression. Ultrasonic energy harvesters facilitate wireless power harvesting and data reception, enhancing the usability of the system. Key circuit performance metrics encompass a 2.2 µVrms input-referred noise, 14-bit ENOB, and a 173 dB Schreier figure of merit (FOM) for the neural analog-to-digital converter (ADC). Additionally, the ultra-low-power radio-frequency (RF) transmitter boasts a remarkable 1.38 pJ/bit energy efficiency. In vivo experiments conducted on rat sciatic nerves provide compelling evidence of the interface's ability to selectively stimulate and record neural fascicles. The proposed PNS neural interface offers alternative treatment options for diagnosing and treating neurological disorders, as well as restoring or repairing neural functions, improving the quality of life for patients with neurological and sensory deficits.


Subject(s)
Nerve Tissue , Quality of Life , Humans , Rats , Animals , Equipment Design , Wireless Technology , Sciatic Nerve
2.
Biosens Bioelectron ; 241: 115668, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37774465

ABSTRACT

Continuous glucose monitoring schemes that avoid finger pricking are of utmost importance to enhance the comfort and lifestyle of diabetic patients. To this aim, we propose a microwave planar sensing platform as a potent sensing technology that extends its applications to biomedical analytes. In this paper, a compact planar resonator-based sensor is introduced for noncontact sensing of glucose. Furthermore, in vivo and in-vitro tests using a microfluidic channel system and in clinical trial settings demonstrate its reliable operation. The proposed sensor offers real-time response and a high linear correlation (R2 ∼ 0.913) between the measured sensor response and the blood glucose level (GL). The sensor is also enhanced with machine learning to predict the variation of body glucose levels for non-diabetic and diabetic patients. This addition is instrumental in triggering preemptive measures in cases of unusual glucose level trends. In addition, it allows for the detection of common artifacts of the sensor as anomalies so that they can be removed from the measured data. The proposed system is designed to noninvasively monitor interstitial glucose levels in humans, introducing the opportunity to create a customized wearable apparatus with the ability to learn.


Subject(s)
Biosensing Techniques , Diabetes Mellitus , Humans , Blood Glucose , Blood Glucose Self-Monitoring , Microwaves , Glucose , Diabetes Mellitus/diagnosis , Machine Learning
3.
Sensors (Basel) ; 23(13)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37448086

ABSTRACT

This research explores the application of an artificial intelligence (AI)-assisted approach to enhance the selectivity of microwave sensors used for liquid mixture sensing. We utilized a planar microwave sensor comprising two coupled rectangular complementary split-ring resonators operating at 2.45 GHz to establish a highly sensitive capacitive region. The sensor's quality factor was markedly improved from 70 to approximately 2700 through the incorporation of a regenerative amplifier to compensate for losses. A deep neural network (DNN) technique is employed to characterize mixtures of methanol, ethanol, and water, using the frequency, amplitude, and quality factor as inputs. However, the DNN approach is found to be effective solely for binary mixtures, with a maximum concentration error of 4.3%. To improve selectivity for ternary mixtures, we employed a more sophisticated machine learning algorithm, the convolutional neural network (CNN), using the entire transmission response as the 1-D input. This resulted in a significant improvement in selectivity, limiting the maximum percentage error to just 0.7% (≈6-fold accuracy enhancement).


Subject(s)
Artificial Intelligence , Neural Networks, Computer , Algorithms , Machine Learning , Amplifiers, Electronic
4.
Sensors (Basel) ; 22(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36146297

ABSTRACT

Planar microwave sensors have become increasing developed in recent decades, especially in material characterization (solid/liquid) as they provide regions highly sensitive to the surrounding medium. However, when it comes to deciphering the content of practical biological analytes or chemical components inside a host medium, even higher sensitivities are required due to their minute concentrations. This review article presents a comprehensive outlook on various methodologies to enhance sensitivity (e.g., coupling resonators, channel embedding, analyte immobilization, resonator pattern recognition, use of phase variation, using coupled line section, and intermodulation products), resolution (active sensors, differential measurements), and robustness (using machine learning) of arbitrary sensors of interest. Some of the most practical approaches are presented with prototype examples, and the main applications of incorporating such procedures are reported. Sensors with which the proposed techniques are implemented exhibit higher performance for high-end and real-life use.

5.
Sensors (Basel) ; 20(4)2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32098062

ABSTRACT

This paper presents a novel planar multifunctional sensor that is used to monitor physical variations in the environment regarding distance, angle, and stretch. A double split-ring resonator is designed at 5.2 GHz as the core operating sensor. Another identical resonator is placed on top of the first one. The stacked configuration is theoretically analyzed using an electric circuit model with a detailed parameter extraction discussion. This design is first employed as a displacement sensor, and a compelling high sensitivity of 500 MHz/mm is observed for a wide dynamic range of 0-5 mm. Then, in another configuration, the stacked design is used as a rotation sensor that results in a high sensitivity of 4.5 MHz/ for the full range of 0-180. In addition, the stacked resonator is utilized as a strain detector, and a 0%-30% stretch is emulated with a linear sensitivity of 12 MHz/%. Measurements are well in congruence with simulated results, which proves the accurate functionality of the sensor in tracking mechanical deformations, all in a single compact contraption.

6.
Environ Sci Technol ; 51(1): 427-435, 2017 01 03.
Article in English | MEDLINE | ID: mdl-27966910

ABSTRACT

A newly developed noncontact high-resolution real-time microwave sensor was used to determine the breakthrough time and adsorption capacity of adsorbents/adsorbates with different dielectric properties. The sensor is a microwave microstrip planar resonator with an enhanced quality factor using a regenerative feedback loop operating at 1.4 GHz and an adjustable quality factor of 200-200000. Beaded activated carbon (BAC, microwave-absorbing) and a polymeric adsorbent (V503, microwave transparent) were completely loaded with 1,2,4-trimethylbenzene (nonpolar) or 2-butoxyethanol (polar). During adsorption, variations in the dielectric properties of the adsorbents were monitored using two microwave parameters; quality factor and resonant frequency. Those parameters were related to adsorption breakthrough time and capacity. Adsorption tests were completed at select relative pressures (0.03, 0.1, 0.2, 0.4, and 0.6) of adsorbates in the influent stream. For all experiments, the difference between the breakthrough time (t5%) and the settling time of the quality factor variation (time that the quality factor was 0.95 of its final value) was <5%. Additionally, a linear relationship between the final value of the resonant frequency shift and adsorption capacity was observed. The proposed noncontact sensor can be used to determine the breakthrough time and adsorption capacity.


Subject(s)
Charcoal , Microwaves , Adsorption , Benzene , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL
...