Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(4): e0301355, 2024.
Article in English | MEDLINE | ID: mdl-38683825

ABSTRACT

Diabetes mellitus (DM) is a severe metabolic disease that can have significant consequences for cognitive health. Bioflavonoids such as Trifolium alexandrinum (TA), quercetin (Q), and Biochanin-A (BCA) are known to exert a wide range of pharmacological functions including antihyperglycemic activity. This study aimed to investigate the neurotherapeutic effects of quercetin-loaded nanoparticles (Q-LNP) and BCA extracted from TA against diabetes-induced cerebral cortical damage through modulation of PI3K/Akt/GSK-3ß and AMPK signaling pathways. Adult male Wistar albino rats (N = 25) were randomly assigned to one of five groups: control, diabetics fed a high-fat diet (HFD) for 2 weeks and intraperitoneally (i.p.) injected with STZ (40 mg/kg), and diabetics treated with Q-LNP (50 mg/kg BW/day), BCA (10 mg/kg BW/day), or TA extract (200 mg/kg BW/day). Treatments were applied by oral gavage once daily for 35 days. Diabetic rats treated with Q-LNP, BCA, and TA extract showed improvement in cognitive performance, cortical oxidative metabolism, antioxidant parameters, and levels of glucose, insulin, triglyceride, and total cholesterol. In addition, these treatments improved neurochemical levels, including acetylcholine, dopamine, and serotonin levels as well acetylcholinesterase and monoamine oxidase activities. Furthermore, these treatments lowered proinflammatory cytokine production for TNF-α and NF-κB; downregulated the levels of IL-1ß, iNOS, APP, and PPAR-γ; and attenuated the expressions of PSEN2, BACE, IR, PI3K, FOXO 1, AKT, AMPK, GSK-3ß, and GFAP. The histopathological examinations of the cerebral cortical tissues confirmed the biochemical results. Overall, the present findings suggest the potential therapeutic effects of TA bioflavonoids in modulating diabetes-induced cerebral cortical damage.


Subject(s)
Cerebral Cortex , Diabetes Mellitus, Experimental , Glycogen Synthase Kinase 3 beta , Nanoparticles , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Quercetin , Trifolium , Animals , Male , Rats , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Glycogen Synthase Kinase 3 beta/metabolism , Nanoparticles/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Quercetin/pharmacology , Quercetin/therapeutic use , Quercetin/administration & dosage , Rats, Wistar , Signal Transduction/drug effects , Trifolium/chemistry
2.
Neurochem Res ; 48(1): 131-141, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36018437

ABSTRACT

Tartrazine (E-102) is one of the most widely used artificial food azo-colors that can be metabolized to highly sensitizing aromatic amines such as sulphanilic acid. These metabolites are oxidized to N-hydroxy derivatives that cause neurotoxicity. Melatonin is a neurohormone. That possesses a free-radical scavenging effect. The present work was mainly designed to evaluate the possible ameliorative role of melatonin against tartrazine induced neurotoxicity in cerebral cortex and cerebellum of male rats. Adult male rats were administered orally with tartrazine (7.5 mg/kg) with or without melatonin (10 mg/kg) daily for four weeks. The data revealed that tartrazine induced redox disruptions as measured by significant (p < 0.05) increased malondialdehyde (MDA) level and inhibition of (GSH) concentration and catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) antioxidant enzyme activities. Besides, brain acetyl cholin (Ach) and gamma-aminobutyric acid (GABA) were elevated while, dopamine (DA) was depleted in trtrazine -treated rats. Moreover, tartrazine caused a significant (p < 0.05) increase in the brain interleukin-6 (IL-6), interleukin-1ß (IL-1 ß) and tumor necrosis factor-α (TNFα). At the tissue level, tartrazine caused severe histopathological changes in the cerebellum and cerebral cortex of rats. The immunohistochemical results elucidated strong positive expression for Caspase-3 and GFAP and weak immune reaction for BcL2 and synaptophysin in tatrazine- treated rats. The administration of melatonin to tartrazine -administered rats remarkably alleviated all the aforementioned tartrzine-induced effects. It could be concluded that, melatonin has a potent ameliorative effect against tartrazine induced neurotoxicity via the attenuation of oxidative/antioxidative responses.


Subject(s)
Melatonin , Tartrazine , Rats , Male , Animals , Tartrazine/toxicity , Melatonin/pharmacology , Rats, Wistar , Oxidative Stress , Antioxidants/pharmacology , Antioxidants/metabolism , Catalase/metabolism , Superoxide Dismutase/metabolism , Malondialdehyde/metabolism , Glutathione Peroxidase/metabolism
3.
Chem Biol Interact ; 352: 109781, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-34922902

ABSTRACT

Diabetic nephropathy (DN) is one of the manifestations of systemic microangiopathy in diabetes. Trifolium alexandrinum extract (TAE) contains biologically active phenolic compounds such as hesperetin (HES) and quercetin, possess various pharmacological properties, including anti-inflammatory, and anti-oxidative potentials. The present study aimed to assess the therapeutic effects and mechanisms underlying the anti-diabetic, antioxidant, and anti-inflammatory effects of HES and quercetin extracted from TAE, and TAE in STZ-induced DN. Male albino rats (170 ± 10 g) were divided into group (1); control rats and groups (2-5); diabetic/HFD were intraperitoneal (i.p.) injected with STZ (35 mg/kg), diabetic rats were randomly classified into STZ, STZ + HES (40 mg/kg), STZ + quercetin (50 mg/kg), and STZ + TAE (200 mg/kg) groups. After 5 weeks, blood and kidney samples were collected for further biochemical, western blotting and histopathological studies. Serum renal functions, renal oxidative status biomarkers and proinflammatory cytokines were determined. The results revealed that there were significant increases in urea, BUN, creatinine, ALP, total protein, albumin, and globulin with a significant decrease in Na+ and K+ levels, as well as significant elevation in TBARS, TGF-ß, TNF-α, IL-6 and the expression levels of GSK-3ß, as well as significant decline in TAC, GSH and CAT levels in STZ-treated group compared to the control rats. The previous deleterious alterations were significantly ameliorated after the treatment of diabetic rats with HES, quercetin and TAE. In conclusion, our data demonstrated that HES, quercetin and TAE could be used as potent therapeutic agents to counter DN through antioxidant, anti-inflammatory, and antidiabetic effects.


Subject(s)
Diabetic Nephropathies/drug therapy , Hesperidin/pharmacology , Phytotherapy , Quercetin/pharmacology , Trifolium/chemistry , Animals , Antioxidants/pharmacology , Apoptosis/drug effects , Diabetes Mellitus, Experimental/diet therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Glycogen Synthase Kinase 3 beta/metabolism , Hypoglycemic Agents/pharmacology , Inflammation/drug therapy , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Male , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Rats , Rats, Wistar
4.
PeerJ ; 9: e11930, 2021.
Article in English | MEDLINE | ID: mdl-34434659

ABSTRACT

BACKGROUND: Bisphenol A (BPA) is an endocrine disruptor to which humans are often subjected during daily life. This study aimed to investigate the ameliorative effect of astragaloside IV (ASIV) or saponins extracted from Astragalus spinosus (A. spinosus) against DNA damage and neurotoxic effects induced by BPA in prefrontal cortex (PFC), hippocampal and striatal brain regions of developing male rats. MATERIALS AND METHODS: Juvenile PND20 (pre-weaning; age of 20 days) male Sprague Dawley rats were randomly and equally divided into four groups: control, BPA, BPA+ASIV and BPA+A. spinosus saponins groups. Bisphenol A (125 mg/kg/day) was administrated orally to male rats from day 20 (BPA group) and along with ASIV (80 mg/kg/day) (BPA+ASIV group) or A. spinosus saponin (100 mg/kg/day) (BPA+ A. spinosus saponins group) from day 50 to adult age day 117. RESULTS: Increased level of nitric oxide (NO) and decreased level of glutamate (Glu), glutamine (Gln), glutaminase (GA) and glutamine synthetase (GS) were observed in the brain regions of BPA treated rats compared with the control. On the other hand, co-administration of ASIV or A. spinosus saponin with BPA considerably improved levels of these neurochemicals. The current study also revealed restoration of the level of brain derived neurotrophic factor (BDNF) and N-methyl-D-aspartate receptors (NR2A and NR2B) gene expression in BPA+ ASIV and BPA+A. spinosus saponins groups. The co-treatment of BPA group with ASIV or A. spinosus saponin significantly reduced the values of comet parameters as well as the intensity of estrogen receptors (ERs) immunoreactive cells and improved the histological alterations induced by BPA in different brain regions. CONCLUSION: It could be concluded that ASIV or A. spinosus saponins has a promising role in modulating the neurotoxicity and DNA damage elicited by BPA.

5.
Environ Sci Pollut Res Int ; 28(26): 35171-35187, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33666843

ABSTRACT

Bisphenol A (BPA) is a chemical endocrine disruptor to which humans are often exposed in daily life. Postnatal administration of BPA results in schizophrenia (SCZ)-like behaviours in rats. The present study was designed to elucidate whether treatment with astragaloside IV (ASIV) or saponins extracted from Astragalus spinosus improves the neurobehavioural and neurochemical disturbances induced by BPA. Fifty-two juvenile (PND20) male Sprague Dawley rats were divided into four groups. The rats in Group I were considered the control rats, while the rats in Group II were orally administered BPA (125 mg/kg) daily from PND20 to adult age (PND117). The rats in the third and fourth groups were administered BPA (125 mg/kg/day) supplemented with astragaloside IV (80 mg/kg/d) on PND20 or A. spinosus saponins (100 mg/kg/d) from PND50 to PND117, respectively. Administration of ASIV and saponins extracted from Astragalus spinosus reversed the anxiogenic and depressive-like behaviours and the social defects that were observed in the rats treated with BPA alone. Additionally, these compounds improved memory impairments, restored dopamine (DA), serotonin (5-HT), and monoamine oxidase (MAO-A) levels and normalized Tph2 mRNA expression towards the control values. Taken together, it can be concluded that orally administered ASIV and A. spinosus saponins exhibit neuroprotective effects and that these compounds can be used as therapeutic strategies against BPA-induced neuropsychiatric symptoms in a rat model of SCZ.


Subject(s)
Cognitive Dysfunction , Saponins , Schizophrenia , Triterpenes , Animals , Antidepressive Agents , Benzhydryl Compounds , Male , Phenols , Rats , Rats, Sprague-Dawley
6.
Environ Sci Pollut Res Int ; 26(25): 26060-26070, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31278647

ABSTRACT

Oxidative stress and neuroinflammatory changes appear to be the early events involved in AD's development and progression. The present study was designed to assess the effect of soybean isoflavone extract (SIFE) against colchicine-induced cognitive dysfunction and oxidative stress in male rats.Fifty adult male Wistar albino rats were divided into five groups: control, ACSF-treated group, soybean isoflavones (SIF)-treated group, colchicine (COL)-treated group, and SIF + COL-treated group. We found that an intracerebroventricular (icv) injection of a single dose of colchicine (7.5 µg/rat bilaterally) resulted in learning deficits in rats subjected to the Morris water maze task associated with marked oxidative damage and decreased acetyl cholinesterase (AChE) activity. In addition, COL caused significant increase in amyloid beta peptide 1-42 (ß, amyloid 1-42) interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNFα), cyclooxygenase-2 (COX-2) and TNF-α genes expression in the brain, and glial fibrillary acidic protein (GFAP) in cortical astrocytes in the brain cortex.Treatment with SIFE (80 mg/kg b.wt) daily for 14 days followed by a single dose of COL significantly reduced the elevated oxidative stress parameters and restored the reduced antioxidant activities. Besides, the administration of SIFE reversed the overproduction of ß, amyloid 1-42, pro-inflammatory cytokines, and GFAP in the brain. The obtained results were confirmed by histological observations that clearly indicate a neuroprotective effect of SIF against AD.


Subject(s)
Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Antioxidants/metabolism , Brain/drug effects , Glial Fibrillary Acidic Protein/metabolism , Glycine max/metabolism , Isoflavones/metabolism , Maze Learning/drug effects , Neuroprotective Agents/pharmacology , Acetylcholinesterase/chemistry , Alzheimer Disease/metabolism , Animals , Antioxidants/chemistry , Astrocytes , Cognitive Dysfunction , Glial Fibrillary Acidic Protein/chemistry , Isoflavones/chemistry , Isoflavones/pharmacology , Male , Oxidative Stress/drug effects , Rats , Rats, Wistar , Glycine max/chemistry , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...