Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36015160

ABSTRACT

Monosodium glutamate (MSG) is one of the most widely used food additives. However, it has been linked to protein malnutrition (PM) and various forms of toxicities such as metabolic disorders and neurotoxic effects. The current study is the first to explore the association between MSG, PM, and induced brain injury similar to attention-deficit/hyperactivity disorder (ADHD). Moreover, we determined the underlying mechanistic protective pathways of morin hydrate (MH)-a natural flavonoid with reported multiple therapeutic properties. PM was induced by feeding animals with a low protein diet and confirmed by low serum albumin measurement. Subsequently, rat pups were randomized into seven groups of 10 rats each. Group I, III, and VI were normally fed (NF) and groups II, IV, V, and VII were PM fed. Group I served as normal control NF while Group II served as PM control animals. Group III received NF + 0.4 g/kg MSG, Group IV: PM + 0.4 g/kg MSG, Group V: PM + 60 mg/kg MH, Group VI: NF + 0.4 kg/g MSG + 60 mg/kg MH and Group VII: PM + 0.4 kg/kg MSG + 60 mg/kg MH. At the end of the experimental period, animals were subjected to behavioral and biochemical tests. Our results showed that treatment of rats with a combination of MSG + PM-fed exhibited inferior outcomes as evidenced by deteriorated effects on behavioral, neurochemical, and histopathological analyses when compared to rats who had received MSG or PM alone. Interestingly, MH improved animals' behavior, increased brain monoamines, brain-derived neuroprotective factor (BDNF), antioxidant status and protein expression of Nrf2/HO-1. This also was accompanied by a significant decrease in brain MDA, inflammatory markers (NF-kB, TNF-α and IL1ß), and suppression of TLR4/NLRP3/caspase-1 axis. Taken together, MSG and/or PM are associated with neuronal dysfunction. Our findings suggest MH as a potential neuroprotective agent against brain insults via targeting Nrf2/HO-1 and hindering TLR4/NLRP3 inflammasome signaling pathways.

SELECTION OF CITATIONS
SEARCH DETAIL
...