Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 207(2): 421-435, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34233909

ABSTRACT

Intracellular ion fluxes emerge as critical actors of immunoregulation but still remain poorly explored. In this study, we investigated the role of the redundant cation channels TMEM176A and TMEM176B (TMEM176A/B) in retinoic acid-related orphan receptor γt+ cells and conventional dendritic cells (DCs) using germline and conditional double knockout mice. Although Tmem176a/b appeared surprisingly dispensable for the protective function of Th17 and group 3 innate lymphoid cells in the intestinal mucosa, we found that they were required in conventional DCs for optimal Ag processing and presentation to CD4+ T cells. Using a real-time imaging method, we show that TMEM176A/B accumulate in dynamic post-Golgi vesicles preferentially linked to the late endolysosomal system and strongly colocalize with HLA-DM. Taken together, our results suggest that TMEM176A/B ion channels play a direct role in the MHC class II compartment of DCs for the fine regulation of Ag presentation and naive CD4+ T cell priming.


Subject(s)
Antigen Presentation/immunology , CD4-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Histocompatibility Antigens Class II/immunology , Membrane Proteins/immunology , Animals , Endosomes/immunology , Female , Genes, MHC Class II/immunology , Golgi Apparatus/immunology , Immunity, Innate/immunology , Intestinal Mucosa/immunology , Ion Channels/immunology , Lymphocytes/immunology , Lysosomes/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Th17 Cells/immunology , Tretinoin/immunology
2.
J Crohns Colitis ; 15(3): 485-498, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-32915959

ABSTRACT

BACKGROUND: Patients with inflammatory bowel disease [IBD] are considered immunosuppressed, but do not seem more vulnerable for COVID-19. Nevertheless, intestinal inflammation has shown to be an important risk factor for SARS-CoV-2 infection and prognosis. Therefore, we investigated the role of intestinal inflammation on the viral intestinal entry mechanisms, including ACE2, in IBD. METHODS: We collected inflamed and uninflamed mucosal biopsies from Crohn's disease [CD] [n = 193] and ulcerative colitis [UC] [n = 158] patients, and from 51 matched non-IBD controls for RNA sequencing, differential gene expression, and co-expression analysis. Organoids from UC patients were subjected to an inflammatory mix and processed for RNA sequencing. Transmural ileal biopsies were processed for single-cell [sc] sequencing. Publicly available colonic sc-RNA sequencing data, and microarrays from tissue pre/post anti-tumour necrosis factor [TNF] therapy, were analysed. RESULTS: In inflamed CD ileum, ACE2 was significantly decreased compared with control ileum [p = 4.6E-07], whereas colonic ACE2 was higher in inflamed colon of CD/UC compared with control [p = 8.3E-03; p = 1.9E-03]. Sc-RNA sequencing confirmed this ACE2 dysregulation and exclusive epithelial ACE2 expression. Network analyses highlighted HNF4A as key regulator of ileal ACE2, and pro-inflammatory cytokines and interferon regulating factors regulated colonic ACE2. Inflammatory stimuli upregulated ACE2 in UC organoids [p = 1.7E-02], but not in non-IBD controls [p = 9.1E-01]. Anti-TNF therapy restored colonic ACE2 regulation in responders. CONCLUSIONS: Intestinal inflammation alters SARS-CoV-2 coreceptors in the intestine, with opposing dysregulations in ileum and colon. HNF4A, an IBD susceptibility gene, seems an important upstream regulator of ACE2 in ileum, whereas interferon signalling might dominate in colon.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , COVID-19 , Colitis, Ulcerative , Colon , Crohn Disease , Hepatocyte Nuclear Factor 4 , Ileum , Interferons/immunology , SARS-CoV-2/physiology , Biopsy/methods , COVID-19/immunology , COVID-19/pathology , COVID-19/physiopathology , Colitis, Ulcerative/immunology , Colitis, Ulcerative/pathology , Colitis, Ulcerative/virology , Colon/immunology , Colon/pathology , Colon/virology , Crohn Disease/immunology , Crohn Disease/pathology , Crohn Disease/virology , Cytokines/immunology , Female , Gene Expression Regulation , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/immunology , Humans , Ileum/immunology , Ileum/pathology , Ileum/virology , Male , Middle Aged , Sequence Analysis, RNA , Signal Transduction , Single-Cell Analysis
3.
Nutrients ; 12(4)2020 Apr 23.
Article in English | MEDLINE | ID: mdl-32340206

ABSTRACT

The interaction between host and external environment mainly occurs in the gastrointestinal tract, where the mucosal barrier has a critical role in many physiologic functions ranging from digestion, absorption, and metabolism. This barrier allows the passage and absorption of nutrients, but at the same time, it must regulate the contact between luminal antigens and the immune system, confining undesirable products to the lumen. Diet is an important regulator of the mucosal barrier, and the cross-talk among dietary factors, the immune system, and microbiota is crucial for the modulation of intestinal permeability and for the maintenance of gastrointestinal tract (GI) homeostasis. In the present review, we will discuss the role of a number of dietary nutrients that have been proposed as regulators of inflammation and epithelial barrier function. We will also consider the metabolic function of the microbiota, which is capable of elaborating the diverse nutrients and synthesizing products of great interest. Better knowledge of the influence of dietary nutrients on inflammation and barrier function can be important for the future development of new therapeutic approaches for patients with mucosal barrier dysfunction, a critical factor in the pathogenesis of many GI and non-GI diseases.


Subject(s)
Gastrointestinal Absorption/physiology , Gastrointestinal Tract/metabolism , Immunity, Mucosal/immunology , Intestinal Mucosa/metabolism , Nutrients/metabolism , Nutrients/physiology , Nutritional Physiological Phenomena/physiology , Digestion , Gastrointestinal Diseases/etiology , Gastrointestinal Microbiome/physiology , Gastrointestinal Tract/microbiology , Homeostasis , Humans , Intestinal Mucosa/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...