Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Lasers Med Sci ; 35(3): 633-640, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31420795

ABSTRACT

The extracellular matrix (ECM) is the main constituent of connective tissue with structural and regulatory functions, stimulating cell differentiation and proliferation. Moreover, ECM is a dynamic structure in the constant remodeling process, which is controlled by a balance between metalloproteinases (MMPs) and their inhibitors (TIMPs). Photobiomodulation (PBM) is widely described in the literature and applied in clinical practices, although its effects on ECM have not yet been elucidated. Therefore, it was evaluated if PBM could alter ECM components, such as MMP-2, -9, -13, and TIMP-2 from mice talocrural joints. Mice were divided into 3 groups (n = 6): control, PBM 3 J cm-2, and PBM 30 J cm-2. A low-level laser (830 nm, 10 mW, 0.05 irradiated area, energy densities 3 J cm-2 and 30 J cm-2, the irradiation time of 15 and 150 s, respectively, continuous wave) was applied on the joint for 4 consecutive days. mRNA levels of metalloproteinases genes (MMP-2, MMP-9, and MMP-13), their regulator (TIMP-2), and protein expressions of MMP-13 and TIMP-2 were quantified. PBM can alter only mRNA relative levels of MMP-2 at 30 J cm-2 (p < 0.05), while MMP-9, MMP-13, and TIMP-2 mRNA relative levels did not demonstrate statistical differences for any of the groups (p > 0.05). Regarding protein expressions, MMP-13 demonstrated positive-labeled cells, only in articular cartilage, although the cell quantification did not demonstrate statistical differences when compared with the control group (p > 0.05). TIMP-2 did not present positive-labeled cells for any tissues evaluated. Our results indicate that PBM can alter MMP-2 mRNA relative level but cannot alter MMP-9, MMP-13, and TIMP mRNA relative levels. Moreover, both MMP-13 and TIMP-2 proteins were also unaltered after PBM.


Subject(s)
Joints/enzymology , Joints/radiation effects , Low-Level Light Therapy , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Animals , Cartilage, Articular/metabolism , Extracellular Matrix/metabolism , Male , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/genetics , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tissue Inhibitor of Metalloproteinase-2/metabolism
2.
Lasers Med Sci ; 34(7): 1381, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30859421

ABSTRACT

The authors wish to clarify that Fávia de Paoli refers to "Flávia de Paoli". The authors apologise for this error.

3.
Lasers Med Sci ; 34(7): 1373-1380, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30721415

ABSTRACT

Photobiomodulation (PBM) by low-level laser has demonstrated excellent results for inflammatory treatments, promoting repair of injured tissues. Knowledge regarding the molecular mechanisms involved in this process has been increasing, but its effect on cell death/survival-related gene expression after laser irradiation with different doses is not well understood. So, it is important to know these effects in order to guarantee the safety of therapeutic protocols based on PBM. This study aimed to investigate the mRNA levels of genes related to proteins involved in cell death/survival pathways of healthy tissues from talocrural joint of mice after PBM. Mice were divided into three groups: control, PBM at 3 J cm-2, and PBM at 30 J cm-2. Laser irradiation was performed on talocrural joint during four consecutive days. Morphological analyses, immunocytochemistry, FasL, Fas, Bax, Apaf1, Caspase9, Caspase3, Caspase6, Bcl2 mRNA levels, and DNA fragmentation were performed to verify cell death induction after laser irradiation. PBM can increase mRNA levels of almost genes pro-apoptotic. On the other hand, mRNA level of anti-apoptotic protein Bcl-2 gene was not significantly altered. Bcl-2/Bax ratio (indicator of protective molecular response) was decreased after PBM at 30 J cm-2, trending to DNA fragmentation. Results obtained in this study indicate that PBM by low-level infrared laser alters mRNA relative levels of genes involved in cell death pathways. However, these molecular alterations were not able to cause DNA fragmentation in cells in talocrural joint tissues, indicating that infrared laser was not enough to cause cell death.


Subject(s)
Apoptosis/genetics , Apoptosis/radiation effects , Gene Expression Regulation/radiation effects , Low-Level Light Therapy , Animals , DNA Fragmentation/radiation effects , Male , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...