Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 12(9)2020 Sep 13.
Article in English | MEDLINE | ID: mdl-32933225

ABSTRACT

The incorporation of kenaf fiber fillers into a polymer matrix has been pronounced in the past few decades. In this study, the effect of multiwalled carbon nanotubes (MWCNTs) with a short kenaf fiber (20 mesh) with polypropylene (PP) added was investigated. The melt blending process was performed using an internal mixer to produce polymer composites with different filler contents, while the suitability of this melt composite for the injection molding process was evaluated. Thermogravimetric analysis (TGA) was carried out to investigate the thermal stability of the raw materials. Rheological analyses were conducted by varying the temperature, load factor, and filler content. The results demonstrate a non-Newtonian pseudoplastic behavior in all samples with changed kenaf fillers (10 to 40 wt %) and MWCNT contents (1 to 4 wt %), which confirm the suitability of the feedstock for the injection molding process. The addition of MWCNTs had an immense effect on the viscosity and an enormous reduction in the feedstock flow behavior. The main contribution of this work is the comprehensive observation of the rheological characteristics of newly produced short PP/kenaf composites that were altered after MWCNT additions. This study also presented an adverse effect on the composites containing MWCNTs, indicating a hydrophilic property with improved water absorption stability and the low flammability effect of PP/kenaf/MWCNT composites. This PP/kenaf/MWCNT green composite produced through the injection molding technique has great potential to be used as car components in the automotive industry.

2.
Polymers (Basel) ; 12(2)2020 Feb 19.
Article in English | MEDLINE | ID: mdl-32092992

ABSTRACT

In this study, a biodegradable, cheap and durable recycled high-density polyethylene (rHDPE) polymer reinforced with rice husk (RH) fibre was fabricated into a foam structure through several processes, including extrusion, internal mixing and hot pressing. The effect of filler loading on the properties of the foam and the influence of RH surface treatments on the filler-matrix adhesion and mechanical properties of the composite foam were investigated. The morphological examination shows that 50 wt.% filler content resulted in an effective dispersion of cells with the smallest cell size (58.3 µm) and the highest density (7.62 × 1011 sel/cm3). This small cell size benefits the mechanical properties. Results indicate that the tensile strength and the Young's modulus of the alkali-treated RH/rHDPE composite foam are the highest amongst the treatments (10.83 MPa and 858 MPa, respectively), followed by UV/O3, which has shown considerable increments compared with the untreated composite. The flexural and impact tests also show the increment in strength for the composite foam after chemical treatment. Although the UV/O3 surface treatment has minor influence on the mechanical enhancement of the composite foam, this method may be a reliable surface treatment of the fibre-reinforced composite.

3.
Materials (Basel) ; 10(10)2017 Oct 17.
Article in English | MEDLINE | ID: mdl-29039743

ABSTRACT

The aim of this study was to prepare ß-wollastonite using a green synthesis method (autoclaving technique) without organic solvents and to study its bioactivity. To prepare ß-wollastonite, the precursor ratio of CaO:SiO2 was set at 55:45. This mixture was autoclaved for 8 h and later sintered at 950 °C for 2 h. The chemical composition of the precursors was studied using X-ray fluorescence (XRF), in which rice husk ash consists of 89.5 wt % of SiO2 in a cristobalite phase and calcined limestone contains 97.2 wt % of CaO. The X-ray diffraction (XRD) patterns after sintering showed that only ß-wollastonite was detected as the single phase. To study its bioactivity and degradation properties, ß-wollastonite samples were immersed in simulated body fluid (SBF) for various periods of time. Throughout the soaking period, the molar ratio of Ca/P obtained was in the range of 1.19 to 2.24, and the phase detected was amorphous calcium phosphate, which was confirmed by scanning electron microscope with energy dispersive X-ray analysis (SEM/EDX) and XRD. Fourier-transform infrared spectroscopy (FTIR) analysis indicated that the peaks of the calcium and phosphate ions increased when an amorphous calcium phosphate layer was formed on the surface of the ß-wollastonite sample. A cell viability and proliferation assay test was performed on the rice husk ash, calcined limestone, and ß-wollastonite samples by scanning electron microscope. For heavy metal element evaluation, a metal panel that included As, Cd, Pb, and Hg was selected, and both precursor and ß-wollastonite fulfilled the requirement of an American Society for Testing and Materials (ASTM F1538-03) standard specification. Apart from that, a degradation test showed that the loss of mass increased incrementally as a function of soaking period. These results showed that the ß-wollastonite materials produced from rice husk ash and limestone possessed good bioactivity, offering potential for biomedical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...