Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Muscle Res Cell Motil ; 40(3-4): 373-378, 2019 12.
Article in English | MEDLINE | ID: mdl-31444710

ABSTRACT

The ß-adrenergic receptor stimulation improves endurance in fast twitch muscles and these effects are sensitive to extracellular Ca2+ influx. Present study is aimed to determine the effects of adrenaline, with different concentrations of extracellular Ca2+[Formula: see text], on the contractility and endurance of slow twitch muscles during high frequency stimulations (HFS). Isolated soleus of rabbit was electrically stimulated (strength; 50 Hz, duration; 0.5 ms) in the presence (Test) of adrenaline (1 × 10-7 mM) or without adrenaline (CTL). Fatigue was induced with HFS (80 Hz) for the duration of 20 s. Contractions were recorded through isometric transducer connected with Powerlab. Kreb's buffer was used with three compositions: standard with 2.5 mM Ca2+ (Ca-S), Ca2+ free buffer (Ca-F) and buffer with raised Ca2+ i.e., 10 mM (Ca-R). Muscles endurance was assessed by measuring the decline in tetanic tension in the terms of percentage (%Pmax) and rate of decline in tetanic tension (dP/dt). During 20 s, %Pmax showed reduction of only 10% in Ca-S. This decline was enhanced in Ca-F (50%) and reduced in Ca-R (6%). Effect of adrenaline was observed only in Ca-F where %Pmax was about 20% greater in Test than CTL. These effects were not observed in both Ca-S and Ca-R during 20 s. However, when duration of stimulation was increased to 120 or 150 s in Ca-S and Ca-R respectively, decline in %Pmax was less in Test as compared to CTL. Thus, [Formula: see text] plays protective role against fatigue during continuous HFS in slow twitch muscles. In addition, adrenaline improves the muscles endurance during fatiguing contraction but these effects are not mediated through [Formula: see text] influx.


Subject(s)
Calcium/metabolism , Epinephrine/metabolism , Muscle Contraction/drug effects , Muscle, Skeletal/physiology , Animals , Rabbits
2.
Indian J Physiol Pharmacol ; 57(4): 390-8, 2013.
Article in English | MEDLINE | ID: mdl-24968578

ABSTRACT

This study deals with the observation of changes with temperature variations of the seasons in the muscular electrical excitability in the reptile Uromastix hardwickii. Freshly captured adult animals of both the sexes were used in all the experiments, and the gastrocnemius (skeletal) muscles were dissected out. The muscle samples were digested with digestive fluid (pepsin & Hcl), stirred, settled and supernatant was removed, till whitish fluid having clear cells obtained for patch clamp recording of ionic currents and potentials. Resting membrane potentials and action potentials of reptilian cell membranes were measured in whole cell current mode. The glass microelectrodes, with a tip diameter 2-3 microm and tip resistance 5-6 MW (when filled with intracellular solution) were used in these experiments. The present study was carried out to investigate the electrical characteristics of the skeletal muscles of this species of Uromastix, which are not studied earlier. The average mean values of resting membrane potential, action potential and its durations showed no significant changes with the change in the season, but other components of action potential including threshold potential, after-potential and its duration were found to be increased significantly (P < 0.05) in summer as compared to winter. Temperature dependency of these parameters with seasonal variation, are studied for the first time in the gastrocnemius (skeletal) muscles of Uromastix hardwickii. Hence seasonal changes in the components of action potential are invariably associated with changes in environmental temperature, and may be responsible for changes in the activities and homeostasis of these animals; and possibly indicating underlying mechanism of hibernation.


Subject(s)
Cell Membrane/physiology , Lizards/physiology , Muscle, Skeletal/physiology , Seasons , Temperature , Action Potentials , Animals , Electric Conductivity , Female , Male , Membrane Potentials , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...