Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Microorganisms ; 9(6)2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34205164

ABSTRACT

Hydrocarbon pollution is widespread around the globe and, even in the remoteness of Antarctica, the impacts of hydrocarbons from anthropogenic sources are still apparent. Antarctica's chronically cold temperatures and other extreme environmental conditions reduce the rates of biological processes, including the biodegradation of pollutants. However, the native Antarctic microbial diversity provides a reservoir of cold-adapted microorganisms, some of which have the potential for biodegradation. This study evaluated the diesel hydrocarbon-degrading ability of a psychrotolerant marine bacterial consortium obtained from the coast of the north-west Antarctic Peninsula. The consortium's growth conditions were optimised using one-factor-at-a-time (OFAT) and statistical response surface methodology (RSM), which identified optimal growth conditions of pH 8.0, 10 °C, 25 ppt NaCl and 1.5 g/L NH4NO3. The predicted model was highly significant and confirmed that the parameters' salinity, temperature, nitrogen concentration and initial diesel concentration significantly influenced diesel biodegradation. Using the optimised values generated by RSM, a mass reduction of 12.23 mg/mL from the initial 30.518 mg/mL (4% (w/v)) concentration of diesel was achieved within a 6 d incubation period. This study provides further evidence for the presence of native hydrocarbon-degrading bacteria in non-contaminated Antarctic seawater.

2.
Biology (Basel) ; 10(6)2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34199334

ABSTRACT

Pollution associated with petrogenic hydrocarbons is increasing in Antarctica due to a combination of increasing human activity and the continent's unforgiving environmental conditions. The current study focuses on the ability of a cold-adapted crude microbial consortium (BS24), isolated from soil on the north-west Antarctic Peninsula, to metabolise diesel fuel as the sole carbon source in a shake-flask setting. Factors expected to influence the efficiency of diesel biodegradation, namely temperature, initial diesel concentration, nitrogen source type and concentration, salinity and pH were studied. Consortium BS24 displayed optimal cell growth and diesel degradation activity at 1.0% NaCl, pH 7.5, 0.5 g/L NH4Cl and 2.0% v/v initial diesel concentration during one-factor-at-a-time (OFAT) analyses. The consortium was psychrotolerant based on the optimum growth temperature of 10‒15 °C. In conventionally optimised media, the highest total petroleum hydrocarbons (TPH) mineralisation was 85% over a 7-day incubation. Further optimisation of conditions predicted through statistical response-surface methodology (RSM) (1.0% NaCl, pH 7.25, 0.75 g/L NH4Cl, 12.5 °C and 1.75% v/v initial diesel concentration) boosted mineralisation to 95% over a 7-day incubation. A Tessier secondary model best described the growth pattern of BS24 in diesel-enriched medium, with maximum specific growth rate, µmax, substrate inhibition constant, Ki and half saturation constant, Ks, being 0.9996 h-1, 1.356% v/v and 1.238% v/v, respectively. The data obtained suggest the potential of microbial consortia such as BS24 in bioremediation applications in low-temperature diesel-polluted soils.

3.
Life (Basel) ; 11(5)2021 May 20.
Article in English | MEDLINE | ID: mdl-34065265

ABSTRACT

Hydrocarbons can cause pollution to Antarctic terrestrial and aquatic ecosystems, both through accidental release and the discharge of waste cooking oil in grey water. Such pollutants can persist for long periods in cold environments. The native microbial community may play a role in their biodegradation. In this study, using mixed native Antarctic bacterial communities, several environmental factors influencing biodegradation of waste canola oil (WCO) and pure canola oil (PCO) were optimised using established one-factor-at-a-time (OFAT) and response surface methodology (RSM) approaches. The factors include salinity, pH, type of nitrogen and concentration, temperature, yeast extract and initial substrate concentration in OFAT and only the significant factors proceeded for the statistical optimisation through RSM. High concentration of substrate targeted for degradation activity through RSM compared to OFAT method. As for the result, all factors were significant in PBD, while only 4 factors were significant in biodegradation of PCO (pH, nitrogen concentration, yeast extract and initial substrate concentration). Using OFAT, the most effective microbial community examined was able to degrade 94.42% and 86.83% (from an initial concentration of 0.5% (v/v)) of WCO and PCO, respectively, within 7 days. Using RSM, 94.99% and 79.77% degradation of WCO and PCO was achieved in 6 days. The significant interaction for the RSM in biodegradation activity between temperature and WCO concentration in WCO media were exhibited. Meanwhile, in biodegradation of PCO the significant factors were between (1) pH and PCO concentration, (2) nitrogen concentration and yeast extract, (3) nitrogen concentration and PCO concentration. The models for the RSM were validated for both WCO and PCO media and it showed no significant difference between experimental and predicted values. The efficiency of canola oil biodegradation achieved in this study provides support for the development of practical strategies for efficient bioremediation in the Antarctic environment.

4.
Polymers (Basel) ; 13(10)2021 May 12.
Article in English | MEDLINE | ID: mdl-34066161

ABSTRACT

Pepsin enzyme was used to pretreat the bovine skin at the rate of 5, 15, and 25 units of enzyme/g of skin to recover gelatin, and the recovered gelatins were referred to as Pe5, Pe15, and Pe25, respectively. The gelatin yield increased significantly (p < 0.05) from 18.17% for Pe5 to 24.67% for Pe25 as the level of pepsin increased, but the corresponding gel strength and viscosity decreased significantly (p < 0.05) from 215.49 to 56.06 g and 9.17 to 8.17 mPa·s for Pe5 and Pe25, respectively. ß- and α1- and α2-chains were degraded entirely in all the gelatins samples as observed in protein pattern elaborated by gel electrophoresis. 1H nuclear magnetic resonance (1H NMR) analysis indicated the coiled structure of gelatin protein chains. The lowest amide III amplitude of Pe25 as found by Fourier transform infrared (FTIR) spectroscopy indicated that α-helix structure of protein chains were lost to more irregular coiled structure. Thus, it could be summarized that pepsin might be used at the lower level (5 units/g of wet skin) to extract gelatin from bovine skin with good functional properties and at higher level (15/25 units/g of wet skin) to obtain gelatin of industrial grade with high yield.

5.
Int J Mol Sci ; 21(24)2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33316871

ABSTRACT

Study of the potential of Antarctic microorganisms for use in bioremediation is of increasing interest due to their adaptations to harsh environmental conditions and their metabolic potential in removing a wide variety of organic pollutants at low temperature. In this study, the psychrotolerant bacterium Rhodococcus sp. strain AQ5-07, originally isolated from soil from King George Island (South Shetland Islands, maritime Antarctic), was found to be capable of utilizing phenol as sole carbon and energy source. The bacterium achieved 92.91% degradation of 0.5 g/L phenol under conditions predicted by response surface methodology (RSM) within 84 h at 14.8 °C, pH 7.05, and 0.41 g/L ammonium sulphate. The assembled draft genome sequence (6.75 Mbp) of strain AQ5-07 was obtained through whole genome sequencing (WGS) using the Illumina Hiseq platform. The genome analysis identified a complete gene cluster containing catA, catB, catC, catR, pheR, pheA2, and pheA1. The genome harbours the complete enzyme systems required for phenol and catechol degradation while suggesting phenol degradation occurs via the ß-ketoadipate pathway. Enzymatic assay using cell-free crude extract revealed catechol 1,2-dioxygenase activity while no catechol 2,3-dioxygenase activity was detected, supporting this suggestion. The genomic sequence data provide information on gene candidates responsible for phenol and catechol degradation by indigenous Antarctic bacteria and contribute to knowledge of microbial aromatic metabolism and genetic biodiversity in Antarctica.


Subject(s)
Catechols/metabolism , Genome, Bacterial , Rhodococcus/genetics , Acclimatization , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biodegradation, Environmental , Catechol 1,2-Dioxygenase/genetics , Catechol 1,2-Dioxygenase/metabolism , Cold Temperature , Rhodococcus/metabolism
6.
Electron. j. biotechnol ; 48: 1-12, nov. 2020. tab, graf, ilus
Article in English | LILACS | ID: biblio-1254671

ABSTRACT

BACKGROUND: The potential waste canola oil-degrading ability of the cold-adapted Antarctic bacterial strain Rhodococcus sp. AQ5-07 was evaluated. Globally, increasing waste from food industries generates serious anthropogenic environmental risks that can threaten terrestrial and aquatic organisms and communities. The removal of oils such as canola oil from the environment and wastewater using biological approaches is desirable as the thermal process of oil degradation is expensive and ineffective. RESULTS: Rhodococcus sp. AQ5-07 was found to have high canola oil-degrading ability. Physico-cultural conditions influencing its activity were studied using one-factor-at-a-time (OFAT) and statistical optimisation approaches. Considerable degradation (78.60%) of 3% oil was achieved by this bacterium when incubated with 1.0 g/L ammonium sulphate, 0.3 g/L yeast extract, pH 7.5 and 10% inoculum at 10°C over a 72-h incubation period. Optimisation of the medium conditions using response surface methodology (RSM) resulted in a 9.01% increase in oil degradation (87.61%) when supplemented with 3.5% canola oil, 1.05 g/L ammonium sulphate, 0.28g/L yeast extract, pH 7.5 and 10% inoculum at 12.5°C over the same incubation period. The bacterium was able to tolerate an oil concentration of up to 4.0%, after which decreased bacterial growth and oil degradation were observed. CONCLUSIONS: These features make this strain worthy of examination for practical bioremediation of lipid-rich contaminated sites. This is the first report of any waste catering oil degradation by bacteria originating from Antarctica.


Subject(s)
Rhodococcus/physiology , Rapeseed Oil/metabolism , Waste Products , Biodegradation, Environmental , Adaptation, Physiological , Cold Temperature , Wastewater , Hydrogen-Ion Concentration , Antarctic Regions
7.
Molecules ; 25(17)2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32858796

ABSTRACT

With the progressive increase in human activities in the Antarctic region, the possibility of domestic oil spillage also increases. Developing means for the removal of oils, such as canola oil, from the environment and waste "grey" water using biological approaches is therefore desirable, since the thermal process of oil degradation is expensive and ineffective. Thus, in this study an indigenous cold-adapted Antarctic soil bacterium, Rhodococcus erythropolis strain AQ5-07, was screened for biosurfactant production ability using the multiple approaches of blood haemolysis, surface tension, emulsification index, oil spreading, drop collapse and "MATH" assay for cellular hydrophobicity. The growth kinetics of the bacterium containing different canola oil concentration was studied. The strain showed ß-haemolysis on blood agar with a high emulsification index and low surface tension value of 91.5% and 25.14 mN/m, respectively. Of the models tested, the Haldane model provided the best description of the growth kinetics, although several models were similar in performance. Parameters obtained from the modelling were the maximum specific growth rate (qmax), concentration of substrate at the half maximum specific growth rate, Ks% (v/v) and the inhibition constant Ki% (v/v), with values of 0.142 h-1, 7.743% (v/v) and 0.399% (v/v), respectively. These biological coefficients are useful in predicting growth conditions for batch studies, and also relevant to "in field" bioremediation strategies where the concentration of oil might need to be diluted to non-toxic levels prior to remediation. Biosurfactants can also have application in enhanced oil recovery (EOR) under different environmental conditions.


Subject(s)
Models, Biological , Rapeseed Oil/metabolism , Rhodococcus/growth & development , Surface-Active Agents/metabolism , Antarctic Regions , Biodegradation, Environmental
8.
J Environ Manage ; 183: 182-195, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27591845

ABSTRACT

Biodegradation of agricultural wastes, generated annually from poultry farms and slaughterhouses, can solve the pollution problem and at the same time yield valuable degradation products. But these wastes also constitute environmental nuisance, especially in Malaysia where their illegal disposal on heavy metal contaminated soils poses a serious biodegradation issue as feather tends to accumulate heavy metals from the surrounding environment. Further, continuous use of feather wastes as cheap biosorbent material for the removal of heavy metals from effluents has contributed to the rising amount of polluted feathers, which has necessitated the search for heavy metal-tolerant feather degrading strains. Isolation, characterization and application of a novel heavy metal-tolerant feather-degrading bacterium, identified by 16S RNA sequencing as Alcaligenes sp. AQ05-001 in degradation of heavy metal polluted recalcitrant agricultural wastes, have been reported. Physico-cultural conditions influencing its activities were studied using one-factor-at-a-time and a statistical optimisation approach. Complete degradation of 5 g/L feather was achieved with pH 8, 2% inoculum at 27 °C and incubation period of 36 h. The medium optimisation after the response surface methodology (RSM) resulted in a 10-fold increase in keratinase production (88.4 U/mL) over the initial 8.85 U/mL when supplemented with 0.5% (w/v) sucrose, 0.15% (w/v) ammonium bicarbonate, 0.3% (w/v) skim milk, and 0.01% (w/v) urea. Under optimum conditions, the bacterium was able to degrade heavy metal polluted feathers completely and produced valuable keratinase and protein-rich hydrolysates. About 83% of the feathers polluted with a mixture of highly toxic metals were degraded with high keratinase activities. The heavy metal tolerance ability of this bacterium can be harnessed not only in keratinase production but also in the bioremediation of heavy metal-polluted feather wastes.


Subject(s)
Alcaligenes/metabolism , Feathers/metabolism , Industrial Microbiology/methods , Metals, Heavy/toxicity , Peptide Hydrolases/metabolism , Agriculture , Alcaligenes/drug effects , Alcaligenes/genetics , Alcaligenes/isolation & purification , Animals , Chickens , Drug Resistance, Multiple, Bacterial , Environmental Pollutants/toxicity , Hydrogen-Ion Concentration , Malaysia , RNA, Ribosomal, 16S , Temperature , Waste Products
9.
J Environ Biol ; 36(5): 1215-21, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26521568

ABSTRACT

Caffeine is an important naturally occurring compound which can be degraded by bacteria. Previously, Leifsonia sp. strain SIU capable of degrading caffeine was isolated from agricultural soil. Plackett-Burman design was used to screen significant parameters that affect the rate of caffeine degradation. After the design was applied, response surface methodology (RSM) through Central Composite Design (CCD) was used to study significant parameters further, in order to get the most superior degradation conditions. The optimum concentrations of carbon source (sucrose), nitrogen source (NH4Cl), pH and initial caffeine concentration was found to be 5.0 gl(-1), 0.4 gl(-1), 6.0 and 375 ppm respectively. Second order polynomial regression model accurately showed interpretation of experimental data with an R2 value of 0.9989, Adjusted (Adj) R2, Predicted (Pred) R2 and F values of 0.9939, 0.9225 and 88.77 respectively.


Subject(s)
Actinobacteria/metabolism , Bioreactors , Caffeine/metabolism
10.
Biomed Res Int ; 2014: 787989, 2014.
Article in English | MEDLINE | ID: mdl-24527457

ABSTRACT

This study was undertaken to optimize skim milk and yeast extract concentration as a cultivation medium for optimal Bifidobacteria pseudocatenulatum G4 (G4) biomass and ß -galactosidase production as well as lactose and free amino nitrogen (FAN) balance after cultivation period. Optimization process in this study involved four steps: screening for significant factors using 2(3) full factorial design, steepest ascent, optimization using FCCD-RSM, and verification. From screening steps, skim milk and yeast extract showed significant influence on the biomass production and, based on the steepest ascent step, middle points of skim milk (6% wt/vol) and yeast extract (1.89% wt/vol) were obtained. A polynomial regression model in FCCD-RSM revealed that both factors were found significant and the strongest influence was given by skim milk concentration. Optimum concentrations of skim milk and yeast extract for maximum biomass G4 and ß -galactosidase production meanwhile low in lactose and FAN balance after cultivation period were 5.89% (wt/vol) and 2.31% (wt/vol), respectively. The validation experiments showed that the predicted and experimental values are not significantly different, indicating that the FCCD-RSM model developed is sufficient to describe the cultivation process of G4 using skim-milk-based medium with the addition of yeast extract.


Subject(s)
Bifidobacterium/growth & development , Bifidobacterium/metabolism , Biotechnology/methods , Culture Media/chemistry , Research Design , Animals , Biomass , Culture Media/metabolism , Milk , Models, Statistical , Reproducibility of Results , Yeasts
SELECTION OF CITATIONS
SEARCH DETAIL
...