Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cureus ; 15(11): e48159, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38046708

ABSTRACT

Construction of an ocular or eye prosthesis can be challenging, as it is a cosmetic device. It needs good communication between dentists and maxillofacial technicians. The construction process normally requires multiple appointments, which involve at least four visits starting with ocular impression to insertion of the prosthesis. This article will outline the clinical step and propose a clinical technique to reduce the number of appointments from four to three appointments, which would benefit both the patient and practitioner.

2.
J Funct Biomater ; 14(4)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37103274

ABSTRACT

The innovation of nanocellulose as reinforcement filler in composites has been a topic of interest in the development of new biomaterials. The objective of this study was to investigate the mechanical properties of a nanohybrid dental composite made of rice husk silica and loaded with different percentages of kenaf nanocellulose. Kenaf cellulose nanocrystals (CNC) were isolated and characterized using a transmission electron microscope (TEM) (Libra 120, Carl Zeiss, Germany). The experimental composite was fabricated with fiber loadings of 1 wt%, 2 wt%, 3 wt%, 4 wt%, and 6 wt% silane-treated kenaf CNC, and subjected to a flexural and compressive strength test (n = 7) using an Instron Universal Testing Machine (Shimadzu, Kyoto, Japan), followed by a scanning electron microscopic assessment of the flexural specimen's fracture surface using a scanning electron microscope (SEM) (FEI Quanta FEG 450, Hillsborough, OR, USA). Commercial composites Filtek Z350XT (3M ESPE, St. Paul, MN, USA), Neofil (Kerr Corporation, Orange, CA, USA) and Ever-X Posterior (GC Corporation, Tokyo, Japan) were used as a comparison. The average diameter of kenaf CNC under TEM was 6 nm. For flexural and compressive strength tests, one-way ANOVA showed a statistically significant difference (p < 0.05) between all groups. Compared to the control group (0 wt%), the incorporation of kenaf CNC (1 wt%) into rice husk silica nanohybrid dental composite showed a slight improvement in mechanical properties and modes of reinforcement, which was reflected in SEM images of the fracture surface. The optimum dental composite reinforcement made of rice husk was 1 wt% kenaf CNC. Excessive fiber loading results in a decline in mechanical properties. CNC derived from natural sources may be a viable alternative as a reinforcement co-filler at low concentrations.

3.
Acta Stomatol Croat ; 54(3): 263-272, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33132389

ABSTRACT

OBJECTIVE: Endodontically treated teeth may require posts for retaining the core and replacing the coronal structures that have been lost. The objective of this study was to evaluate and compare the push-out bond strength between different types of post cemented with different types of luting cement at different types of root level. MATERIALS AND METHODS: In this in-vitro study, a total of 48 single-rooted permanent human teeth were decoronated, and the roots were treated endodontically. Following post space preparation, the sample was divided into four groups (n= 12 each) based on the types of post and cement. Two different types of post [GC everStick®POST (ES) and Parapost® Fiber LuxTM (PF)], and two different types of cement [G-CEMTM (G), and RelyXTM Unicem (R)] were used according to the manufacturer's instructions. All roots were sectioned at the coronal and middle thirds with a thickness of 3±0.1mm. The Push-out bond strength (PBS) test was performed using a universal testing machine at a cross-head speed of 0.5mm/ min. The bond strength values were recorded, and the data were analyzed using the SPSS program. Apart from descriptive statistics, three-way ANOVA was used for the interaction of the independent variables (post, cement, and root level). For differences between the groups, the Mann-Whitney U test was used. A P-value of less than 0.05 was considered significant for all analyses. RESULTS: Push-out bond strength of samples at the middle level (11.38±10.31 MPa), with PF posts (11.18±9.98 MPa), and of those luted with RelyXTM Unicem cement (13.26±8.73 MPa) was higher than that of their counterparts. The PBS means of RelyXTM Unicem cement at both root levels were much higher than PBS means of G-CEMTM cement. Three-way ANOVA test revealed a significant effect for each variable with a higher effect of cement (Sum of Squares= 1310.690; P< 0.001). No significant difference (P= 0.153) was found between the coronal and middle parts and between ES and PF posts (P= 0.058). However, a highly significant difference (P< 0.001) was found between RelyXTM Unicem and G-CEMTM cements. CONCLUSION: The type of cement had a significant effect on push-out bond strength with RelyXTM Unicem which had higher values than G-CEMTM. However, the type of post and root level had no significant effect on PBS, although Parapost® Fiber LuxTM and middle root level had higher values than their counterparts.

SELECTION OF CITATIONS
SEARCH DETAIL
...