Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36559892

ABSTRACT

Water pollution issues, particularly those caused by heavy metal ions, have been significantly growing. This paper combined biopolymers such as sodium alginate (SA) and ß-cyclodextrin (ß-CD) to improve adsorption performance with the help of calcium ion as the cross-linked agent. Moreover, the addition of carbon nanotubes (CNTs) into the hybrid hydrogel matrix was examined. The adsorption of nickel(II) was thoroughly compared between pristine sodium alginate/ß-cyclodextrin (SA-ß-CD) and sodium alginate/ß-cyclodextrin immobilized carbon nanotubes (SA-ß-CD/CNTs) hydrogel. Both hydrogels were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) spectral analysis, field emission scanning electron microscopy (FESEM), electron dispersive spectroscopy (EDX), thermogravimetric analysis (TGA) and Brunauer-Emmett-Teller (BET) surface area analysis. The results showed SA-ß-CD/CNTs hydrogel exhibits excellent thermal stability, high specific surface area and large porosity compared with SA-ß-CD hydrogel. Batch experiments were performed to study the effect of several adsorptive variables such as initial concentration, pH, contact time and temperature. The adsorption performance of the prepared SA-ß-CD/CNTs hydrogel was comprehensively reported with maximum percentage removal of up to 79.86% for SA-ß-CD/CNTs and 69.54% for SA-ß-CD. The optimum adsorption conditions were reported when the concentration of Ni(II) solution was maintained at 100 ppm, pH 5, 303 K, and contacted for 120 min with a 1000 mg dosage. The Freundlich isotherm and pseudo-second order kinetic model are the best fits to describe the adsorption behavior. A thermodynamic study was also performed. The probable interaction mechanisms that enable the successful binding of Ni(II) on hydrogels, including electrostatic attraction, ion exchange, surface complexation, coordination binding and host-guest interaction between the cationic sites of Ni(II) on both SA-ß-CD and SA-ß-CD/CNTs hydrogel during the adsorption process, were discussed. The regeneration study also revealed the high efficiency of SA-ß-CD/CNTs hydrogel on four successive cycles compared with SA-ß-CD hydrogel. Therefore, this work signifies SA-ß-CD/CNTs hydrogel has great potential to remove Ni(II) from an aqueous environment compared with SA-ß-CD hydrogel.

2.
Polymers (Basel) ; 13(22)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34833237

ABSTRACT

In this study, polyacrylonitrile (PAN) was mixed with a renewable polymer, lignin, to produce electrospun nanofibers by using an electrospinning technique. Lignin was utilized as a soft template that was removed from the nanofibers by using a selective dissolution technique to create porous PAN nanofibers. These nanofibers were characterized with Fourier transform infrared (FTIR), field emission scanning electron microscopy (FESEM), thermogravimetry analysis (TGA), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) to study their properties and morphology. The results showed that lignin can be homogeneously mixed into the PAN solution and successfully electrospun into nanofibers. FESEM results showed a strong relationship between the PAN: lignin ratio and the diameter of the electrospun fibers. Lignin was successfully removed from electrospun nanofibers by a selective chemical dissolution technique, which resulted in roughness and porousness on the surface of the nanofibers. Based on the BET result, the specific surface area of the PAN/lignin nanofibers was more than doubled following the removal of lignin compared to PAN nanofibers. The highest specific surface area of nanofibers after selective chemical dissolution was found at an 8:2 ratio of PAN/lignin, which was 32.42 m2g-1 with an average pore diameter of 5.02 nm. The diameter of electrospun nanofibers was also slightly reduced after selective chemical dissolution. Porous PAN nanofibers can be seen as the precursors to the production of highly porous carbon nanofibers.

3.
Polymers (Basel) ; 13(20)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34685349

ABSTRACT

The issue of heavy metal contamination has caused a great deal of concern among water quality experts today, as it contributes to water pollution. Activated carbon nanofibers (ACNFs) showed a significant ability in removing heavy metals from the wastewater. In this study, polyacrylonitrile (PAN) was blended and electrospun with an abundant and inexpensive biopolymer, lignin and a water soluble polymer, poly(ethylene glycol) (PEG), by using an electrospinning technique to form nanofibers. The electrospun nanofibers were then investigated as a precursor for the production of porous ACNFs to study the removal of nickel(II) ions by adsorption technique. PEG was added to act as a porogen and to create the porous structure of carbon nanofibers (CNFs). CNFs were prepared by thermal treatment of the electrospun nanofibers and followed by activation of CNFs by thermal and acid treatment on CNFs. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) spectral analysis of the ACNFs showed a strong absorption peak of the C-O functional group, indicating the increase in the oxygenated compound. Field emission scanning electron microscopy (FESEM) images concluded that the ACNFs have more porous and compact fibers with a smaller fiber diameter of 263 ± 11 nm, while the CNFs are less compact and have slightly larger fiber diameter of 323 ± 6 nm. The adsorption study showed that the ACNFs possessed a much higher adsorption capacity of 18.09 mg/g compared with the CNFs, which the amount adsorbed was achieved only at 2.7 mg/g. The optimum adsorption conditions that gave the highest percentage of 60% for nickel(II) ions removal were 50 mg of adsorbent dosage, 100 ppm of nickel(II) solution, pH 3, and a contact time of 60 min. The study demonstrated that the fabrication of ACNFs from PAN/lignin/PEG electrospun nanofibers have potential as adsorbents for the removal of heavy metal contaminants.

4.
Polymers (Basel) ; 13(12)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34207932

ABSTRACT

Poly(methyl methacrylate) (PMMA) is a lightweight insulating polymer that possesses good mechanical stability. On the other hand, polyaniline (PANi) is one of the most favorable conducting materials to be used, as it is easily synthesized, cost-effective, and has good conductivity. However, most organic solvents have restricted potential applications due to poor mechanical properties and dispersibility. Compared to PANi, PMMA has more outstanding physical and chemical properties, such as good dimensional stability and better molecular interactions between the monomers. To date, many research studies have focused on incorporating PANi into PMMA. In this review, the properties and suitability of PANi as a conducting material are briefly reviewed. The major parts of this paper reviewed different approaches to incorporating PANi into PMMA, as well as evaluating the modifications to improve its conductivity. Finally, the polymerization condition to prepare PMMA/PANi copolymer to improve its conductivity is also discussed.

5.
Molecules ; 25(13)2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32640766

ABSTRACT

Heavy metal pollution, such as lead, can cause contamination of water resources and harm human life. Many techniques have been explored and utilized to overcome this problem, with adsorption technology being the most common strategies for water treatment. In this study, carbon nanofibers, polyacrylonitrile (PAN)/sago lignin (SL) carbon nanofibers (PAN/SL CNF) and PAN/SL activated carbon nanofibers (PAN/SL ACNF), with a diameter approximately 300 nm, were produced by electrospinning blends of polyacrylonitrile and sago lignin followed by thermal and acid treatments and used as adsorbents for the removal of Pb(II) ions from aqueous solutions. The incorporation of biodegradable and renewable SL in PAN/SL blends fibers produces the CNF with a smaller diameter than PAN only but preserves the structure of CNF. The adsorption of Pb(II) ions on PAN/SL ACNF was three times higher than that of PAN/SL CNF. The enhanced removal was due to the nitric acid treatment that resulted in the formation of surface oxygenated functional groups that promoted the Pb(II) ions adsorption. The best-suited adsorption conditions that gave the highest percentage removal of 67%, with an adsorption capacity of 524 mg/g, were 40 mg of adsorbent dosage, 125 ppm of Pb(II) solution, pH 5, and a contact time of 240 min. The adsorption data fitted the Langmuir isotherm and the pseudo-second-order kinetic models, indicating that the adsorption is a monolayer, and is governed by the availability of the adsorption sites. With the adsorption capacity of 588 mg/g, determined via the Langmuir isotherm model, the study demonstrated the potential of PAN/SL ACNFs as the adsorbent for the removal of Pb(II) ions from aqueous solution.


Subject(s)
Acrylic Resins/chemistry , Charcoal/chemistry , Lead/chemistry , Lignin/chemistry , Nanofibers/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Hydrogen-Ion Concentration , Ions , Kinetics , Microscopy, Electron, Scanning , Nanofibers/ultrastructure , Spectroscopy, Fourier Transform Infrared
6.
Sensors (Basel) ; 17(12)2017 Dec 02.
Article in English | MEDLINE | ID: mdl-29207463

ABSTRACT

This article describes chemically modified polyaniline and graphene (PANI/GP) composite nanofibers prepared by self-assembly process using oxidative polymerization of aniline monomer and graphene in the presence of a solution containing poly(methyl vinyl ether-alt-maleic acid) (PMVEA). Characterization of the composite nanofibers was carried out by Fourier transform infrared (FTIR) and Raman spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). SEM images revealed the size of the PANI nanofibers ranged from 90 to 360 nm in diameter and was greatly influenced by the proportion of PMVEA and graphene. The composite nanofibers with an immobilized DNA probe were used for the detection of Mycobacterium tuberculosis by using an electrochemical technique. A photochemical indicator, methylene blue (MB) was used to monitor the hybridization of target DNA by using differential pulse voltammetry (DPV) method. The detection range of DNA biosensor was obtained from of 10-6-10-9 M with the detection limit of 7.853 × 10-7 M under optimum conditions. The results show that the composite nanofibers have a great potential in a range of applications for DNA sensors.


Subject(s)
Nanofibers , Aniline Compounds , Biosensing Techniques , DNA , Graphite , Mycobacterium tuberculosis
7.
Polymers (Basel) ; 9(11)2017 Nov 07.
Article in English | MEDLINE | ID: mdl-30965890

ABSTRACT

The aim was to explore the utilization of tea leaf waste fibers (TLWF) as a source for the production of cellulose nanocrystals (CNC). TLWF was first treated with alkaline, followed by bleaching before being hydrolyzed with concentrated sulfuric acid. The materials attained after each step of chemical treatments were characterized and their chemical compositions were studied. The structure analysis was examined by Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). From FTIR analysis, two peaks at 1716 and 1207 cm-1-which represent C=O stretching and C⁻O stretching, respectively-disappeared in the spectra after the alkaline and bleaching treatments indicated that hemicellulose and lignin were almost entirely discarded from the fiber. The surface morphology of TLWF before and after chemical treatments was investigated by scanning electron microscopy (SEM) while the dimension of CNC was determined by transmission electron microscopy (TEM). The extraction of CNC increased the surface roughness and the crystallinity index of fiber from 41.5% to 83.1%. Morphological characterization from TEM revealed the appearance of needle-like shaped CNCs with average diameter of 7.97 nm. The promising results from all the analyses justify TLWF as a principal source of natural materials which can produce CNC.

SELECTION OF CITATIONS
SEARCH DETAIL
...