Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(4): e25993, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38380021

ABSTRACT

Nitrocellulose (NC) has garnered significant interest among researchers due to its versatile applications, contingent upon the degree of nitration that modifies the cellulose structure. For instance, NC with a high nitrogen content, exceeding 12.5%, finds utility as a key ingredient in propellant formulations, while variants with lower nitrogen content prove suitable for a range of other applications, including the formulation of printing inks, varnishes, and coatings. This communication aims to present the outcomes of our efforts to optimize the nitration reaction of bacterial cellulose to produce high-nitrogen-content NC, employing the response surface methodology (RSM). Our investigation delves into the influence of the mole ratio of sulfuric and nitric acids, reaction temperature, and nitration duration on the nitrogen content of the resultant products. Utilizing a central composite design (CCD), we identified the optimal conditions for NC synthesis. Analysis of variance (ANOVA) underscored the substantial impact of these reaction conditions on the percentage of nitrogen content (%N) yield. By implementing the predicted optimal conditions-namely, a H2SO4:HNO3 mole ratio of 3:1, a reaction temperature of 35 °C, and a reaction period of 22 min-we successfully produced NC with a nitrogen content of 12.64%. Characterization of these products encompassed elemental analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and field emission scanning electron microscopy (FESEM).

2.
RSC Adv ; 13(27): 18748-18759, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37362605

ABSTRACT

In recent years, limited research has been conducted on enhancing DNA hybridization-based biosensor approaches using statistical models. This study explores the application of response surface methodology (RSM) to improve the performance of a DNA hybridization biosensor for dengue virus (DENV) detection. The biosensor is based on silicon nanowires decorated with gold nanoparticles (SiNWs/AuNPs) and utilizes methylene blue as a redox indicator. The DNA hybridization process between the immobilized DNA probe and the target DENV gene was monitored using differential pulse voltammetry (DPV) based on the reduction of methylene blue. Fourier-transform infrared spectroscopy (FTIR) and electrochemical impedance spectroscopy (EIS) were employed to confirm successful DNA hybridization events on the modified screen-printed gold electrode (SPGE) surface. Several parameters, including pH buffer, NaCl concentration, temperature, and hybridization time, were simultaneously optimized, with NaCl concentration having the most significant impact on DNA hybridization events. This study enhances the understanding of the role of each parameter in influencing DNA hybridization detection in electrochemical biosensors. The optimized biosensor demonstrated the ability to detect complementary oligonucleotide and amplified DENV gene concentrations as low as 0.0891 ng µL-1 (10 pM) and 2.8 ng µL-1, respectively. The developed biosensor shows promise for rapid clinical diagnosis of dengue virus infection.

3.
RSC Adv ; 12(1): 1-10, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-35424522

ABSTRACT

The application of electrochemical DNA biosensors in real genomic sample detection is challenging due to the existence of complex structures and low genomic concentrations, resulting in inconsistent and low current signals. This work highlights strategies for the treatment of non-amplified and amplified genomic dengue virus gene samples based on real samples before they can be used directly in our DNA electrochemical sensing system, using methylene blue (MB) as a redox indicator. The main steps in this study for preparing non-amplified cDNA were cDNA conversion, heat denaturation, and sonication. To prepare amplified cDNA dengue virus genomic samples using an RT-PCR approach, we optimized a few parameters, such as the annealing temperature, sonication time, and reverse to forward (R/F) primer concentration ratio. We discovered that the generated methylene blue (MB) signals during the electrochemical sensing of non-amplified and amplified samples differ due to the different MB binding affinities based on the sequence length and base composition. The findings show that our developed electrochemical DNA biosensor successfully discriminates MB current signals in the presence and absence of the target genomic dengue virus, indicating that both samples were successfully treated. This work also provides interesting information about the critical factors in the preparation of genomic gene samples for developing miniaturized PCR-based electrochemical sensing applications in the future. We also discuss the limitations and provide suggestions related to using redox-indicator-based electrochemical biosensors to detect real genomic nucleic acid genes.

4.
RSC Adv ; 11(42): 25933-25942, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-35479481

ABSTRACT

Acephate (Ac) is an organophosphate (OP) compound, which is able to inhibit the activity of acetylcholinesterase. Thus, the aim of this study was to optimize the detection of Ac using a thiolated acephate binding aptamer-citrate capped gold nanoparticle (TABA-Cit-AuNP) sensor that also incorporated an image processing technique. The effects of independent variables, such as the incubation period of TABA-Cit-AuNPs (3-24 h) for binding TABA to Cit-AuNPs, the concentration of phosphate buffer saline (PBS) (0.001-0.01 M), the concentration of thiolated acephate binding aptamer (TABA) (50-200 nM), and the concentration of magnesium sulphate (MgSO4) (1-300 mM) were investigated. A quadratic model was developed using a central composite design (CCD) from response surface methodology (RSM) to predict the sensing response to Ac. The optimum conditions such as the concentration of PBS (0.01 M), the concentration of TABA (200 nM), the incubation period of TABA-Cit-AuNPs (3 h), and the concentration of MgSO4 (1 mM) were used to produce a TABA-Cit-AuNPs sensor for the detection of Ac. Under optimal conditions, this sensor showed a detection ranging from 0.01 to 2.73 µM and a limit of detection (LOD) of 0.06 µM. Real sample analysis demonstrated this aptasensor as a good analytical method to detect Ac.

SELECTION OF CITATIONS
SEARCH DETAIL
...