Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Biochem Biophys ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020086

ABSTRACT

Diabetes mellitus (DM) a metabolic disorder characterized by high blood sugar levels causing damage to various organs over time. Current anti-diabetic drugs have limitations and side effects, prompting a search for new inhibitors targeting the α-amylase enzyme. This study aims to discover such inhibitors from thirty isoxazole derivatives of usnic acid using in silico approaches. The potential inhibitory effects of compounds were investigated using ADMET, molecular docking, molecular dynamic simulation, principal component analysis and density functional theory studies. ADMET analysis exhibited a wide range of physicochemical, pharmacokinetic, and drug-like qualities with no significant side effects which were then investigated using molecular docking experiment to determine the lead compound with the best binding affinity for the α-amylase enzyme. All compounds showed good binding affinity against α-amylase enzyme (-7.9 to -9.2 kcal/mol) where compound-13 showed the best binding affinity of -9.2 kcal/mol forming hydrogen bonds with Leu162, Tyr62, Glu233 and Asp300 amino acids. Furthermore, the binding posture and the stability of the compound-13-α-amylase enzyme complex was confirmed by molecular dynamic simulation experiment. Moreover, compound-13 showed binding energy value of -27.92 ± 5.61 kcal/mol, which indicated it could be an α-amylase inhibitor. Additionally, the reactivity of compound-13 was further confirmed by density functional theory analysis. The above findings suggest compound-13 to be a potential α-amylase inhibitor in DM. And setting the stage for further in vitro and in vivo experimental validation.

2.
Data Brief ; 51: 109635, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37840994

ABSTRACT

This paper provided the dataset obtained from spectroscopic, crystallography and DFT of a new compound namely 1,2-bis[N,N'-6-(4-pyridylmethylamido)pyridyl-2-carboxyamido]butane. This compound is prepared from the reaction between N-6-[(4-pyridylmethylamino)carbonyl]-pyridine-2-carboxylic acid methyl ester with butane-1,4-diamine. The preparation of this compound is modified from the method described in our article [1]. In this work, we present data characterization of 1,2-bis[N,N'-6-(4-pyridylmethylamido)pyridyl-2-carboxyamido]butane from Fourier Transform Infrared (FTIR), 1H Nuclear Magnetic Resonance (1 H NMR), NOESY NMR, 13C Nuclear Magnetic Resonance (13C NMR), and elemental analysis (CHNS). The structure of this molecule is also analysed by X-ray crystallography and DFT studies. A single-crystal X-ray diffraction investigation was carried out by using Bruker SMART Apex II Duo CCD area-detector diffractometers with MoKα radiation (wavelength of λ = 0.71073 Å). The optimized energy was indicated with GaussView 5.0 and Gaussian 16 software package programme.

3.
Bioinorg Chem Appl ; 2021: 5536902, 2021.
Article in English | MEDLINE | ID: mdl-34135948

ABSTRACT

This article presents both experimental and computational study of a new Ni(II) complex, namely, bis{2-(2-trifluoromethylbenzylidene)hydrazine-1-carbothioamido-κ 2N2, S}nickel(II) (abbreviate as NiL2). The complex was synthesized and well characterized using various spectroscopic methods. The single X-ray crystallographic study revealed a distorted square planar geometry around Ni(II) metal ion centre in which the angles deviated from ideal 90° with a maximum value of 6.57° occupied by nitrogen and sulphur donor atoms. The theoretical bond lengths and angles for the NiL2 complex were obtained by using the B3LYP level of density function theory (DFT) with LANL2DZ/6-311G (d, p) basis sets. These results showed very good agreement with the experimental X-ray values. The electrophilicity index (ω = 50.233 eV) shows that the NiL2 complex is a very strong electrophile. In addition, strong F⋯H/H⋯F interactions with 28.5% of the total Hirshfeld surface analyses in NiL2 were obtained indicating that the complex could bind with protein effectively. Furthermore, the new NiL2 complex was docked with plasma retinol-binding protein 4 (RBP4) (PDB id: 5NU7), which implied that the NiL2 complex bound to Tyrosine 133 and Aspartate 102 amino acids via N-H intermolecular hydrogen bonds.

4.
Enzyme Microb Technol ; 130: 109367, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31421729

ABSTRACT

Currently, the chemically-assisted esterification to manufacture butyl butyrate employs corrosive homogeneous acid catalyst and liberates enormous quantities of hazardous by-products which complicate downstream treatment processes. This study aimed to identify the optimized esterification conditions, and the kinetic aspects of the enzyme-assisted synthesis of butyl butyrate using immobilized Candida rugosa lipase activated by chitosan-reinforced nanocellulose derived from raw oil palm leaves (CRL/CS-NC). The best process variables that gave the maximum conversion degree of butyl butyrate by CRL/CS-NC (90.2%) in just 3 h, as compared to free CRL (62.9%) are as follows: 50 °C, 1:2 M ratio of acid/alcohol, stirring rate of 200 rpm and a 3 mg/mL enzyme load. The enzymatic esterification followed the ping pong bi-bi mechanism with substrate inhibition, revealing a ˜1.1-fold higher Ki for CRL/CS-NC (55.55 mM) over free CRL (50.68 mM). This indicated that CRL/CS-NC was less inhibited by the substrates. Butanol was preferred over butyric acid as reflected by the higher apparent Michaelis-Menten constant of CRL/CS-NC for butanol (137 mM) than butyric acid (142.7 mM). Thus, the kinetics data conclusively showed that CRL/CS-NC (Vmax 0.48 mM min-1, Keff 0.07 min-1 mM-1) was catalytically more efficient than free CRL (Vmax 0.35 mM min-1, Keff 0.06 min-1 mM-1).


Subject(s)
Butyrates/metabolism , Candida/enzymology , Cellulose/chemistry , Chitosan/chemistry , Lipase/metabolism , Biocatalysis , Enzyme Stability , Enzymes, Immobilized , Esterification , Kinetics , Palm Oil/chemistry , Plant Leaves/chemistry
5.
J Mol Graph Model ; 92: 131-139, 2019 11.
Article in English | MEDLINE | ID: mdl-31352207

ABSTRACT

Dehalogenases continue to garner interest of the scientific community due to their potential applications in bioremediation of halogen-contaminated environment and in synthesis of various industrially relevant products. Example of such enzymes is DehL, an L-2-haloacid dehalogenase (EC 3.8.1.2) from Rhizobium sp. RC1 that catalyses the specific cleavage of halide ion from L-2-halocarboxylic acids to produce the corresponding D-2-hydroxycarboxylic acids. Recently, the catalytic residues of DehL have been identified and its catalytic mechanism has been fully elucidated. However, the enantiospecificity determinants of the enzyme remain unclear. This information alongside a well-defined catalytic mechanism are required for rational engineering of DehL for substrate enantiospecificity. Therefore, using quantum mechanics/molecular mechanics and molecular mechanics Poisson-Boltzmann surface area calculations, the current study theoretically investigated the molecular basis of DehL enantiospecificity. The study found that R51L mutation cancelled out the dehalogenation activity of DehL towards it natural substrate, L-2-chloropropionate. The M48R mutation, however introduced a new activity towards D-2-chloropropionate, conveying the possibility of inverting the enantiospecificity of DehL from L-to d-enantiomer with a minimum of two simultaneous mutations. The findings presented here will play important role in the rational design of DehL dehalogenase for improving substrate utility.


Subject(s)
Hydrocarbons, Chlorinated/chemistry , Hydrolases/chemistry , Models, Theoretical , Propionates/chemistry , Rhizobium/enzymology , Binding Sites , Hydrolases/genetics , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutation , Protein Binding , Rhizobium/genetics , Structure-Activity Relationship , Substrate Specificity
6.
J Sep Sci ; 42(4): 906-924, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30605233

ABSTRACT

Depression is a common mental disorder that may lead to major mental health problems, and antidepressant drugs have been used as a treatment of choice to mitigate symptoms of major depressive disorders by ameliorating the chemical imbalances of neurotransmitters in brain. Since abusing antidepressant drugs such as selective serotonin reuptake inhibitors and tricyclic antidepressant drugs can cause severe adverse effects, continuous toxicological monitoring of the parent compounds as well as their metabolites using numerous analytical methods appears pertinent. Among them, capillary electrophoresis has been popularly utilized since the method has a lot of advantages viz. using small amounts of sample and solvents, ease of operation, and rapid analysis. This review paper brings a survey of more than 30 papers on capillary electrophoresis of antidepressant drugs published approximately from 1999 until 2018. It focuses on the reported capillary electrophoresis techniques and their applications and challenges for determining antidepressant drugs and their metabolites. It is organized according to the commonly used capillary zone electrophoresis method, followed by non-aqueous capillary electrophoresis and micellar electrokinetic chromatography, with details on breakthrough findings. Where available, information is given about the background electrolyte used, detector utilized, and sensitivity obtained.


Subject(s)
Antidepressive Agents/analysis , Electrophoresis, Capillary , Humans
7.
Environ Sci Pollut Res Int ; 25(30): 30224-30235, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30155632

ABSTRACT

Contamination of toxic metals in P. viridis mussels has been prevalently reported; hence, health risk assessment for consuming this aquaculture product as well as the surrounding surface seawater at its harvesting sites appears relevant. Since Kampung Pasir Puteh, Pasir Gudang is the major harvesting site in Malaysia, and because the last heavy metal assessment was done in 2009, its current status remains unclear. Herein, flame atomic absorption spectrometry and flow injection mercury/hydride system were used to determine the concentrations of Pb, Cd, Cu and total Hg in P. viridis mussels and surface seawater (January-March 2015), respectively. Significantly higher concentrations of these metals were found in P. viridis mussels (p < 0.05) than that of surface seawater samples. The concentrations for Pb (4.27-6.55 µg/g) and Cd (1.55-2.21 µg/g) in P. viridis mussels exceeded the maximum permitted proportion prescribed by the Malaysian law. The concentrations of all metals in surface seawater also violated the Malaysia Marine Water Quality Criteria and Standards. Significant (p < 0.05) and high strength of association (r = 0.787) observed between Pb concentration in P. viridis mussel with the surface seawater indicates its possible application for inferring Pb concentrations in the mussel. Since both the calculated target hazard quotient and hazard index for Pb and Cd exceeded 1, the possible detrimental health impacts on human for consuming P. viridis mussels from this rearing site cannot be ignored. Hence, promoting continuous monitoring programmes and developing efficient toxic metal removal techniques prior to entering the market are required.


Subject(s)
Cadmium/analysis , Lead/analysis , Metals, Heavy/analysis , Perna/metabolism , Seafood/analysis , Seawater/chemistry , Water Pollutants, Chemical/analysis , Animals , Cadmium/adverse effects , Environmental Monitoring , Humans , Lead/adverse effects , Longitudinal Studies , Malaysia , Mercury/analysis , Metals, Heavy/adverse effects , Risk Assessment , Water Pollutants, Chemical/adverse effects , Water Quality
8.
Int J Mol Sci ; 19(6)2018 May 25.
Article in English | MEDLINE | ID: mdl-29799469

ABSTRACT

Waterways are popular locations for the disposition of criminal evidence because the recovery of latent fingerprints from such evidence is difficult. Currently, small particle reagent is a method often used to visualize latent fingerprints containing carcinogenic and hazardous compounds. This study proposes an eco-friendly, safranin-tinted Candida rugosa lipase (triacylglycerol ester hydrolysis EC 3.1.1.3) with functionalized carbon nanotubes (CRL-MWCNTS/GA/SAF) as an alternative reagent to the small particle reagent. The CRL-MWCNTS/GA/SAF reagent was compared with the small particle reagent to visualize groomed, full fingerprints deposited on stainless steel knives which were immersed in a natural outdoor pond for 30 days. The quality of visualized fingerprints using the new reagent was similar (modified-Centre for Applied Science and Technology grade: 4; p > 0.05) to small particle reagent, even after 15 days of immersion. Despite the slight decrease in quality of visualized fingerprints using the CRL-MWCNTS/GA/SAF on the last three immersion periods, the fingerprints remained forensically identifiable (modified-Centre for Applied Science and Technology grade: 3). The possible chemical interactions that enabled successful visualization is also discussed. Thus, this novel reagent may provide a relatively greener alternative for the visualization of latent fingerprints on immersed non-porous objects.


Subject(s)
Dermatoglyphics , Forensic Sciences/methods , Fungal Proteins/chemistry , Lipase/chemistry , Nanoconjugates/chemistry , Phenazines/chemistry , Candida/chemistry , Candida/enzymology , Fresh Water , Glutaral/chemistry , Green Chemistry Technology , Humans , Indicators and Reagents , Nanotubes, Carbon/chemistry , Stainless Steel
SELECTION OF CITATIONS
SEARCH DETAIL
...