Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 14: 1106933, 2023.
Article in English | MEDLINE | ID: mdl-37384334

ABSTRACT

Introduction: Hypospadias [MIM: 300633] is one of the most frequent congenital malformations of male external genitalia. The spectrum of genetic variants causing hypospadias is varied, with studies commonly implicating genes critical in the fetal steroidogenic pathway. This is the first genetic study on hypospadias from the Yemen ethnicity and the second to report HSD3B2 mutations in more than one affected individual from the same family. Material and methods: Surgical hypospadias repair was performed on two hypospadias-affected siblings from a consanguineous family. Whole-exome sequencing (WES) was performed to identify the potential pathogenic variant for hypospadias, which was later confirmed by Sanger sequencing. The identified variant was further analyzed for its pathogenicity by using in silico tools such as SIFT, PolyPhen-2, MutationAssessor, MutationTaster, FATHMM, and ConSurf. Results: We identified a novel missense mutation (Chr1:119964631T>A, c.507T>A, p. N169K) in 3ß-hydroxysteroid 2-dehydrogenase (HSD3B2) gene by WES. Sanger sequencing confirmed that the variant segregated the disease in the family between the affected and non-affected individuals. Both patients are homozygous, while parents and two unaffected siblings are heterozygous carriers, indicating an autosomal recessive pattern of inheritance. The in silico analysis by all six in silico tools (SIFT, PolyPhen-2, MutationAssessor, MutationTaster, FATHMM, and ConSurf) predicted the variant to be pathogenic/deleterious. Discussion: An abnormal fetal steroidogenic pathway due to genetic influences may affect the development of the male genital tract, including the urethral tract closure and morphogenesis of male genitalia. Furthermore, the pathogenicity of the observed variant in this study, confirmed by multiple in silico tools, characterizes the influence HSD3B2 gene variants may have in the etiology of hypospadias. Conclusion: Understanding of pathogenic manifestation and inheritance of confounding genetic variants in hypospadias is a matter of great concern, especially in familial cases.

2.
PLoS One ; 11(5): e0153999, 2016.
Article in English | MEDLINE | ID: mdl-27152669

ABSTRACT

Congenital heart defects (CHD) presented as structural defects in the heart and blood vessels during birth contribute an important cause of childhood morbidity and mortality worldwide. Many Single nucletotide polymorphisms (SNPs) in different genes have been associated with various types of congenital heart defects. NKX 2-5 gene is one among them, which encodes a homeobox-containing transcription factor that plays a crucial role during the initial phases of heart formation and development. Mutations in this gene could cause different types of congenital heart defects, including Atrial septal defect (ASD), Atrial ventricular block (AVB), Tetralogy of fallot and ventricular septal defect. This highlights the importance of studying the impact of different SNPs found within this gene that might cause structural and functional modification of its encoded protein. In this study, we retrieved SNPs from the database (dbSNP), followed by identification of potentially deleterious Non-synonymous single nucleotide polymorphisms (nsSNPs) and prediction of their effect on proteins by computational screening using SIFT and Polyphen. Furthermore, we have carried out molecular dynamic simulation (MDS) in order to uncover the SNPs that would cause the most structural damage to the protein altering its biological function. The most important SNP that was found using our approach was rs137852685 R161P, which was predicted to cause the most damage to the structural features of the protein. Mapping nsSNPs in genes such as NKX 2-5 would provide valuable information about individuals carrying these polymorphisms, where such variations could be used as diagnostic markers.


Subject(s)
Heart Defects, Congenital/genetics , Homeobox Protein Nkx-2.5/genetics , Polymorphism, Single Nucleotide , Computer Simulation , Homeobox Protein Nkx-2.5/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Mutation , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...