Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Neuropathol Commun ; 12(1): 85, 2024 05 31.
Article in English | MEDLINE | ID: mdl-38822433

ABSTRACT

Here, we test whether early visual and OCT rod energy-linked biomarkers indicating pathophysiology in nicotinamide nucleotide transhydrogenase (Nnt)-null 5xFAD mice also occur in Nnt-intact 5xFAD mice and whether these biomarkers can be pharmacologically treated. Four-month-old wild-type or 5xFAD C57BL/6 substrains with either a null (B6J) Nnt or intact Nnt gene (B6NTac) and 5xFAD B6J mice treated for one month with either R-carvedilol + vehicle or only vehicle (0.01% DMSO) were studied. The contrast sensitivity (CS), external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness (a proxy for low pH-triggered water removal), profile shape of the hyperreflective band just posterior to the ELM (i.e., the mitochondrial configuration within photoreceptors per aspect ratio [MCP/AR]), and retinal laminar thickness were measured. Both wild-type substrains showed similar visual performance indices and dark-evoked ELM-RPE contraction. The lack of a light-dark change in B6NTac MCP/AR, unlike in B6J mice, is consistent with relatively greater mitochondrial efficiency. 5xFAD B6J mice, but not 5xFAD B6NTac mice, showed lower-than-WT CS. Light-adapted 5xFAD substrains both showed abnormal ELM-RPE contraction and greater-than-WT MCP/AR contraction. The inner retina and superior outer retina were thinner. Treating 5xFAD B6J mice with R-carvedilol + DMSO or DMSO alone corrected CS and ELM-RPE contraction but not supernormal MCP/AR contraction or laminar thinning. These results provide biomarker evidence for prodromal photoreceptor mitochondrial dysfunction/oxidative stress/oxidative damage, which is unrelated to visual performance, as well as the presence of the Nnt gene. This pathophysiology is druggable in 5xFAD mice.


Subject(s)
Dimethyl Sulfoxide , Mice, Inbred C57BL , Animals , Mice , Dimethyl Sulfoxide/pharmacology , Biomarkers/metabolism , Mice, Transgenic , Tomography, Optical Coherence , Retinal Rod Photoreceptor Cells/drug effects , Contrast Sensitivity/drug effects , Contrast Sensitivity/physiology , Disease Models, Animal , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/pathology , Retinal Pigment Epithelium/metabolism , Vision, Ocular/drug effects , Vision, Ocular/physiology
2.
Neuroimage ; 207: 116402, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31783115

ABSTRACT

Fundamental to the understanding of the functions of spatial cognition and attention is to clarify the underlying neural mechanisms. It is clear that relatively right-dominant activity in ventral and dorsal parieto-frontal cortex is associated with attentional reorienting, certain forms of mental imagery and spatial working memory for higher loads, while lesions mostly to right ventral areas cause spatial neglect with pathological attentional biases to the right side. In contrast, complementary leftward biases in healthy people, called pseudoneglect, have been associated with varying patterns of cortical activity. Notably, this inconsistency may be explained, at least in part, by the fact that pseudoneglect studies have often employed experimental paradigms that do not control sufficiently for cognitive processes unrelated to pseudoneglect. To address this issue, here we administered a carefully designed continuum of pseudoneglect and control tasks in healthy adults while using functional magnetic resonance imaging (fMRI). Data submitted to partial least square (PLS) imaging analysis yielded a significant latent variable that identified a right-dominant network of brain regions along the intra-occipital and -parietal sulci, frontal eye fields and right ventral cortex in association with perceptual pseudoneglect. Our results shed new light on the interplay of attentional and cognitive systems in pseudoneglect.


Subject(s)
Attention/physiology , Brain/physiopathology , Cognition/physiology , Perceptual Disorders/physiopathology , Adult , Female , Functional Laterality/physiology , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Male , Memory, Short-Term/physiology , Space Perception/physiology , Visual Perception/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...