Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Gene Ther ; 32(19-20): 1138-1146, 2021 10.
Article in English | MEDLINE | ID: mdl-33765840

ABSTRACT

Duchenne muscular dystrophy (DMD) is an X-linked recessive disease that affects 1:5,000 live male births and is characterized by muscle wasting. By the age of 13 years, affected individuals are often wheelchair bound and suffer from respiratory and cardiac failure, which results in premature death. Although the administration of corticosteroids and ventilation can relieve the symptoms and extend the patients' lifespan, currently no cure exists for DMD. Among the different approaches under preclinical and clinical testing, gene therapy, using adeno-associated viral (AAV) vectors, is one of the most promising. In this study, we delivered intravenously AAV9 vectors expressing the microdystrophin MD1 (ΔR4-R23/ΔCT) under control of the synthetic muscle-specific promoter Spc5-12 and assessed the effect of adding a cardiac-specific cis-regulatory module (designated as CS-CRM4) on its expression profile in skeletal and cardiac muscles. Results show that Spc5-12 promoter, in combination with an AAV serotype that has high tropism for the heart, drives high MD1 expression levels in cardiac muscle in mdx mice. The additional regulatory element CS-CRM4 can further improve MD1 expression in cardiac muscles, but its effect is dose dependent and enhancement becomes evident only at lower vector doses.


Subject(s)
Dystrophin , Muscular Dystrophy, Duchenne , Animals , Dependovirus/genetics , Dystrophin/genetics , Genetic Vectors/genetics , Humans , Male , Mice , Mice, Inbred mdx , Muscle, Skeletal , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , Myocardium
2.
F1000Res ; 52016.
Article in English | MEDLINE | ID: mdl-27594988

ABSTRACT

Duchenne muscular dystrophy (DMD) is a recessive lethal inherited muscular dystrophy caused by mutations in the gene encoding dystrophin, a protein required for muscle fibre integrity. So far, many approaches have been tested from the traditional gene addition to newer advanced approaches based on manipulation of the cellular machinery either at the gene transcription, mRNA processing or translation levels. Unfortunately, despite all these efforts, no efficient treatments for DMD are currently available. In this review, we highlight the most advanced therapeutic strategies under investigation as potential DMD treatments.

3.
Methods Mol Biol ; 1114: 325-38, 2014.
Article in English | MEDLINE | ID: mdl-24557913

ABSTRACT

Gene targeting by homologous recombination at chromosomal endogenous loci has traditionally been considered a low-efficiency process. However, the effectiveness of such so-called genome surgery or genome editing has recently been drastically improved through technical developments, chiefly the use of designer nucleases like zinc-finger nucleases (ZFNs), meganucleases, transcription activator-like effector nucleases (TALENs) and CRISPR/Cas nucleases. These enzymes are custom designed to recognize long target sites and introduce double-strand breaks (DSBs) at specific target loci in the genome, which in turn mediate significant improvements in the frequency of homologous recombination. Here, we describe a Southern blot-based assay that allows detection of gene repair and estimation of repair frequencies in a cell population, useful in cases where the targeted modification itself cannot be detected by restriction digest. This is achieved through detection of a silent restriction site introduced alongside the desired mutation, in our particular example using integration-deficient lentiviral vectors (IDLVs) coding for ZFNs and a suitable DNA repair template.


Subject(s)
Blotting, Southern , DNA Repair , Endonucleases/metabolism , Zinc Fingers/physiology , Animals , Blotting, Southern/methods , Endonucleases/genetics , Fibroblasts/metabolism , Genetic Vectors/genetics , Homologous Recombination , Lentivirus/genetics , Mice , Transduction, Genetic
4.
Mol Cell Biol ; 33(7): 1442-55, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23382070

ABSTRACT

Regulation of the activity of N-methyl-d-aspartate receptors (NMDARs) at glutamatergic synapses is essential for certain forms of synaptic plasticity underlying learning and memory and is also associated with neurotoxicity and neurodegenerative diseases. In this report, we investigate the role of Src-like adaptor protein (Slap) in NMDA receptor signaling. We present data showing that in dissociated neuronal cultures, activation of ephrin (Eph) receptors by chimeric preclustered eph-Fc ligands leads to recruitment of Slap and NMDA receptors at the sites of Eph receptor activation. Interestingly, our data suggest that prolonged activation of EphA receptors is as efficient in recruiting Slap and NMDA receptors as prolonged activation of EphB receptors. Using established heterologous systems, we examined whether Slap is an integral part of NMDA receptor signaling. Our results showed that Slap does not alter baseline activity of NMDA receptors and does not affect Src-dependent potentiation of NMDA receptor currents in Xenopus oocytes. We also demonstrate that Slap reduces excitotoxic cell death triggered by activation of NMDARs in HEK293 cells. Finally, we present evidence showing reduced levels of NMDA receptors in the presence of Slap occurring in an activity-dependent manner, suggesting that Slap is part of a mechanism that homeostatically modulates the levels of NMDA receptors.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Proto-Oncogene Proteins pp60(c-src)/genetics , Proto-Oncogene Proteins pp60(c-src)/metabolism , Receptors, Eph Family/genetics , Receptors, Eph Family/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Brain/metabolism , Cell Death/genetics , Cell Line , HEK293 Cells , Hippocampus/metabolism , Humans , Neuronal Plasticity/genetics , Neurons/metabolism , Oocytes/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/genetics , Xenopus laevis/genetics , Xenopus laevis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...