Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 196(5): 494, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691200

ABSTRACT

This study investigated the impact of soil type, pH, and geographical locations on the accumulation of arsenic (As), lead (Pb), and cadmium (Cd) in rice grains cultivated in Ghana. One hundred rice farms for the sampling of rice grains and soil were selected from two regions in Ghana-Volta and Oti. The concentrations of As, Pb, and Cd were analyzed using ICP-OES. Speciation modeling and multivariate statistics were employed to ascertain the relations among measured parameters. The results showed significant variations in soil-As, Pb, and Cd levels across different soil types and pH ranges, with the highest soil-As and Cd found in alkaline vertisols. For soil-As and Cd, the vertisols with a pH more than 7.0 exhibited the highest mean concentration of As (2.51 ± 0.932 mgkg-1) and Cd (1.00 ± 0.244 mgkg-1) whereas for soil-Pb, the luvisols of soil types with a pH less than 6.0 exhibited the highest mean concentration of Pb (4.91 ± 1.540 mgkg-1). Grain As, Pb, and Cd also varied across soil types and pH levels. In regards to grain-As, the vertisols soil type, with a pH less than 6.0, shows the highest mean concentration of grain As, at 0.238 ± 0.107 mgkg-1. Furthermore, vertisols soil types with a pH level less than 6.0 showed the highest mean concentration of grain Cd, averaging at 0.231 ± 0.068 mgkg-1 while luvisols, with a pH less than 6.0, exhibited the highest mean concentration of grain Pb at 0.713 ± 0.099 mgkg-1. Speciation modeling indicated increased bioavailability of grains Cd2+ and Pb2+ ions in acidic conditions. A significant interaction was found between soil-Cd and pH, affecting grain-As uptake. The average concentrations of soil As, Pb, and Cd aligned with international standards. Generally, the carcinogenic metals detected in grain samples collected from the Volta region are higher than that of the Oti region but the differences are insignificant, and this may be attributed to geographical differences and anthropogenic activities. About 51% of the study area showed a hazard risk associated with grain metal levels, although, no carcinogenic risks were recognized. This study highlights the complex soil-plant interactions governing metal bioaccumulation and emphasizes the need for tailored strategies to minimize metal transfer into grains.


Subject(s)
Arsenic , Cadmium , Environmental Monitoring , Oryza , Soil Pollutants , Soil , Soil Pollutants/analysis , Ghana , Soil/chemistry , Oryza/chemistry , Cadmium/analysis , Hydrogen-Ion Concentration , Arsenic/analysis , Lead/analysis , Agriculture
2.
Environ Sci Pollut Res Int ; 31(18): 27099-27116, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38503949

ABSTRACT

This research provides a comprehensive analysis of groundwater pollution in the Lower Anayari Catchment (LAC) through δ2H and δ18O isotopic analysis, along with positive matrix factorization (PMF) and PCS-MLR receptor models. Forty groundwater samples were collected from hand-dug wells and equipped boreholes across the LAC. Flame photometry for Na+ and K+, complexometric titration for Ca2+, ion chromatography for Cl-, F-, NO3-, SO42-, and PO43-, and atomic absorption spectrometry for Mg2+, Fe, Pb, Cd, As, and Ni were analytical techniques/instruments employed. In regard to cations, Na+ has the highest average concentration of 63.0 mg/L, while Mg2+ has the lowest at 2.58 mg/L. Concerning the anions and nutrients, Cl- has the highest mean concentration of 18.7 mg/L, and Fl- has the lowest at 0.50 mg/L. Metalloids were detected in trace amount with Fe displaying the highest mean concentration of 0.077 mg/L whereas Cd and As recorded lowest (0.001 mg/L). The average values for groundwater δ18O and δ2H were - 3.64‰ and - 20.7‰, respectively; the average values for rainwater isotopic composition were - 3.41‰ for δ18O and - 17.4‰ for δ2H. It is believed that natural geological features, particularly biotite granitoid and volcanic flow/subvolcanic rocks from the Birimian Supergroup, significantly influence groundwater mineralisation. Additionally, the impact of anthropogenic activities on water quality, with urban development and agricultural practices, may be attributed to increasing levels of certain contaminants such as Fe, Ni, NO3-, and PO43-. This research contributes to the broader field of hydrological study and provides practical implications for managing and conserving water resources in similar contexts. The innovative combination of isotopic and statistical analyses sets a new standard for future studies in groundwater quality assessment, emphasising the need for comprehensive approaches that consider both geological characteristics and human impacts for sustainable water resource management.


Subject(s)
Environmental Monitoring , Groundwater , Water Pollutants, Chemical , Groundwater/chemistry , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...