Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proteins ; 83(4): 662-9, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25641314

ABSTRACT

Insulin plays a central role in the regulation of metabolism in humans. Mutations in the insulin gene can impair the folding of its precursor protein, proinsulin, and cause permanent neonatal-onset diabetes mellitus known as Mutant INS-gene induced Diabetes of Youth (MIDY) with insulin deficiency. To gain insights into the molecular basis of this diabetes-associated mutation, we perform molecular dynamics simulations in wild-type and mutant (Cys(A7) to Tyr or C(A7)Y) insulin A chain in aqueous solutions. The C(A7)Y mutation is one of the identified mutations that impairs the protein folding by substituting the cysteine residue which is required for the disulfide bond formation. A comparative analysis reveals structural differences between the wild-type and the mutant conformations. The analyzed mutant insulin A chain forms a metastable state with major effects on its N-terminal region. This suggests that MIDY mutant involves formation of a partially folded intermediate with conformational change in N-terminal region in A chain that generates flexible N-terminal domain. This may lead to the abnormal interactions with other proinsulins in the aggregation process.


Subject(s)
Diabetes Mellitus/genetics , Insulin/genetics , Humans , Molecular Dynamics Simulation , Protein Conformation
2.
J Chem Inf Model ; 54(10): 3033-43, 2014 Oct 27.
Article in English | MEDLINE | ID: mdl-25207854

ABSTRACT

A limitation of traditional molecular dynamics (MD) is that reaction rates are difficult to compute. This is due to the rarity of observing transitions between metastable states since high energy barriers trap the system in these states. Recently the weighted ensemble (WE) family of methods have emerged which can flexibly and efficiently sample conformational space without being trapped and allow calculation of unbiased rates. However, while WE can sample correctly and efficiently, a scalable implementation applicable to interesting biomolecular systems is not available. We provide here a GPLv2 implementation called AWE-WQ of a WE algorithm using the master/worker distributed computing WorkQueue (WQ) framework. AWE-WQ is scalable to thousands of nodes and supports dynamic allocation of computer resources, heterogeneous resource usage (such as central processing units (CPU) and graphical processing units (GPUs) concurrently), seamless heterogeneous cluster usage (i.e., campus grids and cloud providers), and support for arbitrary MD codes such as GROMACS, while ensuring that all statistics are unbiased. We applied AWE-WQ to a 34 residue protein which simulated 1.5 ms over 8 months with peak aggregate performance of 1000 ns/h. Comparison was done with a 200 µs simulation collected on a GPU over a similar timespan. The folding and unfolded rates were of comparable accuracy.


Subject(s)
Algorithms , Computer Systems , Molecular Dynamics Simulation , Proteins/chemistry , Protein Folding , Protein Structure, Tertiary , Protein Unfolding , Thermodynamics , Tryptophan/chemistry
3.
Parasit Vectors ; 6: 150, 2013 May 24.
Article in English | MEDLINE | ID: mdl-23705687

ABSTRACT

BACKGROUND: The control of vector-borne diseases, such as malaria, dengue fever, and typhus fever is often achieved with the use of insecticides. Unfortunately, insecticide resistance is becoming common among different vector species. There are currently no chemical alternatives to these insecticides because new human-safe classes of molecules have yet to be brought to the vector-control market. The identification of novel targets offer opportunities for rational design of new chemistries to control vector populations. One target family, G protein-coupled receptors (GPCRs), has remained relatively under explored in terms of insecticide development. METHODS: A novel classifier, Ensemble*, for vector GPCRs was developed. Ensemble* was validated and compared to existing classifiers using a set of all known GPCRs from Aedes aegypti, Anopheles gambiae, Apis Mellifera, Drosophila melanogaster, Homo sapiens, and Pediculus humanus. Predictions for unidentified sequences from Ae. aegypti, An. gambiae, and Pe. humanus were validated. Quantitative RT-PCR expression analysis was performed on previously-known and newly discovered Ae. aegypti GPCR genes. RESULTS: We present a new analysis of GPCRs in the genomes of Ae, aegypti, a vector of dengue fever, An. gambiae, a primary vector of Plasmodium falciparum that causes malaria, and Pe. humanus, a vector of epidemic typhus fever, using a novel GPCR classifier, Ensemble*, designed for insect vector species. We identified 30 additional putative GPCRs, 19 of which we validated. Expression of the newly discovered Ae. aegypti GPCR genes was confirmed via quantitative RT-PCR. CONCLUSION: A novel GPCR classifier for insect vectors, Ensemble*, was developed and GPCR predictions were validated. Ensemble* and the validation pipeline were applied to the genomes of three insect vectors (Ae. aegypti, An. gambiae, and Pe. humanus), resulting in the identification of 52 GPCRs not previously identified, of which 11 are predicted GPCRs, and 19 are predicted and confirmed GPCRs.


Subject(s)
Arthropod Vectors/genetics , Computational Biology/methods , Entomology/methods , Molecular Biology/methods , Receptors, G-Protein-Coupled/genetics , Aedes/genetics , Animals , Anopheles/genetics , Gene Expression Profiling , Pediculus/genetics , Real-Time Polymerase Chain Reaction
4.
Proc IEEE Int Conf Escience ; 2012: 1-8, 2012 Oct.
Article in English | MEDLINE | ID: mdl-25540799

ABSTRACT

Molecular modeling is a field that traditionally has large computational costs. Until recently, most simulation techniques relied on long trajectories, which inherently have poor scalability. A new class of methods is proposed that requires only a large number of short calculations, and for which minimal communication between computer nodes is required. We considered one of the more accurate variants called Accelerated Weighted Ensemble Dynamics (AWE) and for which distributed computing can be made efficient. We implemented AWE using the Work Queue framework for task management and applied it to an all atom protein model (Fip35 WW domain). We can run with excellent scalability by simultaneously utilizing heterogeneous resources from multiple computing platforms such as clouds (Amazon EC2, Microsoft Azure), dedicated clusters, grids, on multiple architectures (CPU/GPU, 32/64bit), and in a dynamic environment in which processes are regularly added or removed from the pool. This has allowed us to achieve an aggregate sampling rate of over 500 ns/hour. As a comparison, a single process typically achieves 0.1 ns/hour.

SELECTION OF CITATIONS
SEARCH DETAIL
...