Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(11): e32257, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38947436

ABSTRACT

New 3-furan-1-thiophene-based chalcones were synthesized, characterized and pharmacologically evaluated as antibacterial and anticancer agents against two bacterial species; Gram-positive (Streptococcus pyogenes) and Gram-negative (Pseudomonas aeruginosa). All tested final compounds were active against the two bacterial species; S. pyogenes and P . aeruginosa. Especially compound AM4 showed large inhibition zone (27.13 and 23.30 mm), respectively. Using the DPPH assay, the new chalcones were evaluated for their free radical scavenging activity and found to reach up to 90 %, accomplished at a test concentration of 200 µg/mL. Furthermore, the chalcone derivatives were investigated against two breast cell lines; MCF-7 (cancerous) and MCF-10A (non-cancerous). Compound AM4 showed potent anticancer activity (IC50 = 19.354 µg/mL) in comparison to the other tested chalcone derivatives. In silico study was achieved using the PyRx AutoDock Vina software (0.8) to study the interaction types between the new hits and the binding sites of targeted proteins; glucosamine-6-phosphate synthase and tubulin, the target for antibacterial and anticancer drugs, respectively. Based on the molecular docking results the tested chalcones bind to the active pocket of the respective proteins, which support the in vitro results. In conclusion, 3-furan-1-thiophene-based chalcones could serve as new hits in the discovery of novel anticancer and/or antibacterial drugs.

2.
Antibiotics (Basel) ; 13(1)2023 Dec 24.
Article in English | MEDLINE | ID: mdl-38247580

ABSTRACT

The present work focuses on the synthesis and preliminary structure activity relationships (SARs) of furan-derived chalcones and their corresponding ∆2-pyrazoline derivatives as antimicrobial agents. Eight novel chalcone derivatives and eight ∆2-pyrazoline compounds were synthesized in moderate to good isolated yields. The target compounds were evaluated as antimicrobial agents against two Gram-positive (Staphylococcus aureus and Staphylococcus epidermidis), two Gram-negative (Escherichia coli and Klebsiella pneumoniae), and fungi (Candida albicans) species. Based on the SARs, chalcones 2a and 2h showed inhibition activity on all tested microbial species, while ∆2-pyrazoline 3d was found to be selective for some microbial species. The most potent compounds (2a, 2h, and 3d) were docked into glucosamine-6-phosphate synthase (GlcN-6-P), the molecular target enzyme for antimicrobial agents, utilizing the Autodock 4.2 program, in order to study their virtual affinity and binding mode with the target enzyme. The selected potent compounds were found to bind to the active site of the enzyme probably in a similar way to that of the substrate as suggested by the docking study. In summary, the newly developed furan-derived chalcones and their ∆2-pyrazoline derivatives could serve as potent leads toward the development of novel antimicrobial agents.

3.
J Comput Chem ; 32(3): 463-82, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20730780

ABSTRACT

Glycosidases, including ß-D-galactosidase, are involved in a variety of metabolic disorders, such as diabetes, viral or bacterial infections, and cancer. Accordingly, we were prompted to find new ß-D-galactosidase inhibitors. Towards this end, we scanned the pharmacophoric space of this enzyme using a set of 41 known inhibitors. Genetic algorithm and multiple linear regression analyses were used to select an optimal combination of pharmacophoric models and physicochemical descriptors to yield self-consistent and predictive quantitative structure-activity relationship (QSAR). Five pharmacophores emerged in the QSAR equations suggesting the existence of more than one binding mode accessible to ligands within ß-D-galactosidase pocket. The successful pharmacophores were complemented with strict shape constraints in an attempt to optimize their receiver-operating characteristic curve profiles. The validity of the QSAR equations and the associated pharmacophoric models were experimentally established by the identification of several ß-D-galactosidase inhibitors retrieved via in silico search of two structural databases: the National Cancer Institute list of compounds and our in house built structural database of established drugs and agrochemicals.


Subject(s)
Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Escherichia coli/enzymology , beta-Galactosidase/antagonists & inhibitors , beta-Galactosidase/metabolism , Models, Molecular , Quantitative Structure-Activity Relationship
4.
J Mol Model ; 17(3): 443-64, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20490878

ABSTRACT

Glycosidases, including ß-D-glucosidase, are involved in a variety of metabolic disorders such as diabetes, viral or bacterial infections and cancer. Accordingly, we were prompted to find new ß-D-glucosidase inhibitors. Towards this end we scanned the pharmacophoric space of this enzyme using a set of 41 known inhibitors. Genetic algorithm and multiple linear regression analyses were employed to select an optimal combination of pharmacophoric models and physicochemical descriptors to yield self-consistent and predictive quantitative structure-activity relationship (QSAR). Three pharmacophores emerged in the QSAR equations, suggesting the existence of more than one binding mode accessible to ligands within the ß-D-glucosidase pocket. The successful pharmacophores were complemented with strict shape constraints in an attempt to optimize their receiver-operating characteristic (ROC) curve profiles. The validity of the QSAR equations and the associated pharmacophoric models were established experimentally by the identification of several ß-D-glucosidase inhibitors retrieved via in silico search of two structural databases, namely the National Cancer Institute (NCI) list of compounds, and our in-house structural database of established drugs and agrochemicals (DAC).


Subject(s)
Enzyme Inhibitors/chemistry , Models, Chemical , Models, Molecular , Quantitative Structure-Activity Relationship , beta-Glucosidase/antagonists & inhibitors , Binding Sites , Computational Biology , Molecular Conformation , Protein Structure, Tertiary , Software , beta-Glucosidase/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...