Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(22)2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36430854

ABSTRACT

Vitamin D (VD) deficiency is a hallmark of obesity and vascular dysfunction. We sought to test the hypothesis that VD deficiency may contribute to obesity-related vascular dysfunction by inducing adipokine hypomethylation and augmented expression. To this end, we collected blood and adipose tissues (ATs) from a cohort of 77 obese participants who were classified as having mild, moderate, or severe VD deficiency. The body composition, vascular reactivity, cardiometabolic profiles, and DNA methylation of 94 inflammation-related adipokines were measured. Our results show that higher degrees of VD deficiency were associated with lower DNA methylation and induced the expression of inflammatory adipokines such as B-cell lymphoma 6 (BCL6), C-X-C Motif Chemokine Ligand 8 (CXCL8), histone deacetylase 5 (HDAC5), interleukin 12A (IL12A), and nuclear factor κB (NFκB) in the ATs. They were also associated with higher BMI and total and visceral fat mass, impaired insulin sensitivity and lipid profiles, AT hypoxia, and higher concentrations of circulating inflammatory markers. Moderate and severe VD deficiency correlated with impaired vasoreactivity of the brachial artery and AT-isolated arterioles, reduced nitric oxide generation, and increased arterial stiffness. In a multivariate regression analysis, the VD deficiency level strongly predicted the adipokine methylation score, systemic inflammation, and microvascular dysfunction. In conclusion, our findings suggest that VD deficiency is a possible contributor to obesity-related adipokine hypomethylation, inflammation, and vascular dysfunction.


Subject(s)
DNA Methylation , Vitamin D Deficiency , Humans , Vitamin D Deficiency/complications , Vitamin D Deficiency/genetics , Vitamin D Deficiency/metabolism , Adipose Tissue/metabolism , Obesity/complications , Obesity/genetics , Obesity/metabolism , Inflammation/metabolism , Adipokines/metabolism , DNA/metabolism
2.
Biomedicines ; 10(8)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36009501

ABSTRACT

A large percentage of obese patients in the United States suffer a comorbid substance use disorder, mainly alcohol use. Alcohol consumption interferes with the absorption of dietary methyl donors such as folate required for the one-carbon metabolism pathway and subsequently for DNA methylation. In this study, we assessed the association between alcohol consumption and DNA methylation in obese subjects. We obtained visceral adipose tissue (VAT) biopsies from bariatric patients. DNA methylation of 94 genes implicated in inflammation and immunity were analyzed in VAT in relation to alcohol consumption data obtained via questionnaires. Vasoreactivity was measured in the brachial artery and the VAT-isolated arterioles. Pro-inflammatory genes were significantly hypomethylated in the heavy drinking category correlating with higher levels of circulating inflammatory cytokines. Alcohol consumption correlated positively with body mass index (BMI), fat percentage, insulin resistance, impaired lipid profile, and systemic inflammation and negatively with plasma folate and vitamin B12, inflammatory gene DNA methylation, and vasoreactivity. In conclusion, these data suggest that alcohol intake is associated with lower DNA methylation and higher inflammation and cardiometabolic risk in obese individuals.

SELECTION OF CITATIONS
SEARCH DETAIL
...