Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Molecules ; 28(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37110697

ABSTRACT

The increased interest in the transition from liquid to solid polymer electrolytes (SPEs) has driven enormous research in the area polymer electrolyte technology. Solid biopolymer electrolytes (SBEs) are a special class of SPEs that are obtained from natural polymers. Recently, SBEs have been generating much attention because they are simple, inexpensive, and environmentally friendly. In this work, SBEs based on glycerol-plasticized methylcellulose/pectin/potassium phosphate (MC/PC/K3PO4) are investigated for their potential application in an electrochemical double-layer capacitor (EDLC). The structural, electrical, thermal, dielectric, and energy moduli of the SBEs were analyzed via X-ray diffractometry (XRD), Fourier transforms infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS), transference number measurement (TNM), and linear sweep voltammetry (LSV). The plasticizing effect of glycerol in the MC/PC/K3PO4/glycerol system was confirmed by the change in the intensity of the samples' FTIR absorption bands. The broadening of the XRD peaks demonstrates that the amorphous component of SBEs increases with increasing glycerol concentration, while EIS plots demonstrate an increase in ionic conductivity with increasing plasticizer content owing to the formation of charge-transfer complexes and the expansion of amorphous domains in polymer electrolytes (PEs). The sample containing 50% glycerol has a maximal ionic conductivity of about 7.5 × 10-4 scm-1, a broad potential window of 3.99 V, and a cation transference number of 0.959 at room temperature. Using the cyclic voltammetry (CV) test, the EDLC constructed from the sample with the highest conductivity revealed a capacitive characteristic. At 5 mVs-1, a leaf-shaped profile with a specific capacitance of 57.14 Fg-1 was measured based on the CV data.

2.
Molecules ; 28(4)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36838770

ABSTRACT

Presently, the rising concerns about the fossil fuel crisis and ecological deterioration have greatly affected the world economy and hence have attracted attention to the utilization of renewable energies. Among the renewable energy being developed, supercapacitors hold great promise in broad applications such as electric vehicles. Presently, the main challenge facing supercapacitors is the amount of energy stored. This, however, does not satisfy the increasing demand for higher energy storage devices, and therefore, intensive research is being undertaken to overcome the challenges of low energy density. The purpose of this review is to report on solid polymer electrolytes (SPEs) based on polyvinyl alcohol (PVA). The review discussed the PVA as a host polymer in SPEs followed by a discussion on the influence of conducting salts. The formation of SPEs as well as the ion transport mechanism in PVA SPEs were discussed. The application and development of PVA-based polymer electrolytes on supercapacitors and other energy storage devices were elucidated. The fundamentals of electrochemical characterization for analyzing the mechanism of supercapacitor applications, such as EIS, LSV and dielectric constant, are highlighted. Similarly, thermodynamic transport models of ions and their mechanism about temperature based on Arrhenius and Vogel-Tammann-Fulcher (VTF) are analyzed. Methods for enhancing the electrochemical performance of PVA-based SPEs were reported. Likely challenges facing the current electrolytes are well discussed. Finally, research directions to overcome the present challenges in producing SPEs are proposed. Therefore, this review is expected to be source material for other researchers concerned with the development of PVA-based SPE material.


Subject(s)
Polymers , Polyvinyl Alcohol , Ethanol , Electrolytes , Salts
3.
Healthcare (Basel) ; 10(10)2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36292387

ABSTRACT

In recent times, the growth of the Internet of Things (IoT), artificial intelligence (AI), and Blockchain technologies have quickly gained pace as a new study niche in numerous collegiate and industrial sectors, notably in the healthcare sector. Recent advancements in healthcare delivery have given many patients access to advanced personalized healthcare, which has improved their well-being. The subsequent phase in healthcare is to seamlessly consolidate these emerging technologies such as IoT-assisted wearable sensor devices, AI, and Blockchain collectively. Surprisingly, owing to the rapid use of smart wearable sensors, IoT and AI-enabled technology are shifting healthcare from a conventional hub-based system to a more personalized healthcare management system (HMS). However, implementing smart sensors, advanced IoT, AI, and Blockchain technologies synchronously in HMS remains a significant challenge. Prominent and reoccurring issues such as scarcity of cost-effective and accurate smart medical sensors, unstandardized IoT system architectures, heterogeneity of connected wearable devices, the multidimensionality of data generated, and high demand for interoperability are vivid problems affecting the advancement of HMS. Hence, this survey paper presents a detailed evaluation of the application of these emerging technologies (Smart Sensor, IoT, AI, Blockchain) in HMS to better understand the progress thus far. Specifically, current studies and findings on the deployment of these emerging technologies in healthcare are investigated, as well as key enabling factors, noteworthy use cases, and successful deployments. This survey also examined essential issues that are frequently encountered by IoT-assisted wearable sensor systems, AI, and Blockchain, as well as the critical concerns that must be addressed to enhance the application of these emerging technologies in the HMS.

4.
Molecules ; 27(17)2022 Aug 28.
Article in English | MEDLINE | ID: mdl-36080295

ABSTRACT

In this study, a solution casting method was used to prepare solid polymer electrolytes (SPEs) based on a polymer blend comprising polyvinyl alcohol (PVA), cellulose acetate (CA), and potassium carbonate (K2CO3) as a conducting salt, and zinc oxide nanoparticles (ZnO-NPs) as a nanofiller. The prepared electrolytes were physicochemically and electrochemically characterized, and their semi-crystalline nature was established using XRD and FESEM. The addition of ZnO to the polymer-salt combination resulted in a substantial increase in ionic conductivity, which was investigated using impedance analysis. The size of the semicircles in the Cole-Cole plots shrank as the amount of nanofiller increased, showing a decrease in bulk resistance that might be ascribed to an increase in ions due to the strong action of the ZnO-NPs. The sample with 10 wt % ZnO-NPs was found to produce the highest ionic conductivity, potential window, and lowest activation energy (Ea) of 3.70 × 10-3 Scm-1, 3.24 V, and 6.08 × 10-4 eV, respectively. The temperature-frequency dependence of conductivity was found to approximately follow the Arrhenius model, which established that the electrolytes in this study are thermally activated. Hence, it can be concluded that, based on the improved conductivity observed, SPEs based on a PVA-CA-K2CO3/ZnO-NPs composite could be applicable in all-solid-state energy storage devices.

5.
Molecules ; 27(15)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35897923

ABSTRACT

Successful synthesis of ZnO-chitosan nanocomposites was conducted for the removal of methylene blue from an aqueous medium. Remarkable performance of the nanocomposites was demonstrated for the effective uptake of the dye, thereby achieving 83.77, 93.78 and 97.93 mg g-1 for the chitosan, 5 wt.% ZnO-Chitosan and 10 wt.% ZnO-Chitosan, respectively. The corresponding adsorption efficiency was 88.77, 93.78 and 97.95 for the chitosan, 5 wt.% ZnO-Chitosan and 10 wt.% ZnO-Chitosan, respectively. Upon regeneration, good reusability of the nanocomposites was manifested for the continuous removal of the dye up to six consecutive cycles. The adsorption process was kinetically described by a pseudo-first order model, while the isotherms were best fitted by the Langmuir model.


Subject(s)
Chitosan , Nanocomposites , Water Pollutants, Chemical , Zinc Oxide , Adsorption , Hydrogen-Ion Concentration , Kinetics , Methylene Blue , Wastewater
6.
Polymers (Basel) ; 13(1)2020 Dec 28.
Article in English | MEDLINE | ID: mdl-33379413

ABSTRACT

Composite polymer electrolyte (CPE) based on polyvinyl alcohol (PVA) polymer, potassium carbonate (K2CO3) salt, and silica (SiO2) filler was investigated and optimized in this study for improved ionic conductivity and potential window for use in electrochemical devices. Various quantities of SiO2 in wt.% were incorporated into PVA-K2CO3 complex to prepare the CPEs. To study the effect of SiO2 on PVA-K2CO3 composites, the developed electrolytes were characterized for their chemical structure (FTIR), morphology (FESEM), thermal stabilities (TGA), glass transition temperature (differential scanning calorimetry (DSC)), ionic conductivity using electrochemical impedance spectroscopy (EIS), and potential window using linear sweep voltammetry (LSV). Physicochemical characterization results based on thermal and structural analysis indicated that the addition of SiO2 enhanced the amorphous region of the PVA-K2CO3 composites which enhanced the dissociation of the K2CO3 salt into K+ and CO32- and thus resulting in an increase of the ionic conduction of the electrolyte. An optimum ionic conductivity of 3.25 × 10-4 and 7.86 × 10-3 mScm-1 at ambient temperature and at 373.15 K, respectively, at a potential window of 3.35 V was observed at a composition of 15 wt.% SiO2. From FESEM micrographs, the white granules and aggregate seen on the surface of the samples confirm that SiO2 particles have been successfully dispersed into the PVA-K2CO3 matrix. The observed ionic conductivity increased linearly with increase in temperature confirming the electrolyte as temperature-dependent. Based on the observed performance, it can be concluded that the CPEs based on PVA-K2CO3-SiO2 composites could serve as promising candidate for portable and flexible next generation energy storage devices.

7.
Polymers (Basel) ; 12(12)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33271876

ABSTRACT

Supercapacitors are energy storage devices with high power density, rapid charge/discharge rate, and excellent cycle stability. Carbon-based supercapacitors are increasingly attracting attention because of their large surface area and high porosity. Carbon-based materials research has been recently centered on biomass-based materials due to the rising need to maintain a sustainable environment. Cellulose and lignin constitute the major components of lignocellulose biomass. Since they are renewable, sustainable, and readily accessible, lignin and cellulose-based supercapacitors are economically viable and environmentally friendly. This review aims to systematically analyze published research findings on electrospun lignin, cellulose, and lignin/cellulose nanofibers for use as supercapacitor electrode materials. A rigorous scientific approach was employed to screen the eligibility of relevant articles to be included in this study. The research questions and the inclusion criteria were clearly defined. The included articles were used to draw up the research framework and develop coherent taxonomy of literature. Taxonomy of research literature generated from the included articles was classified into review papers, electrospun lignin, cellulose, and lignin/cellulose nanofibers for use as supercapacitor electrode materials. Furthermore, challenges, recommendations, and research directions for future studies were equally discussed extensively. Before this study, no review on electrospun lignin/cellulose nanofiber-based supercapacitors has been reported. Thus, this systematic review will provide a reference for other researchers interested in developing biomass-based supercapacitors as an alternative to conventional supercapacitors based on petroleum products.

8.
Molecules ; 25(19)2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32992942

ABSTRACT

The optical constants of Para-Toluene sulfonic acid-doped polyaniline (PANI), PANIchitosan composites, PANI-reduced graphene-oxide composites and a ternary composite comprising of PANI, chitosan and reduced graphene-oxide dispersed in diluted p-toluene sulfonic acid (PTSA) solution and N-Methyl-2-Pyrrolidone (NMP) solvent have been evaluated and compared. The optical constant values were extracted from the absorbance spectra of thin layers of the respective samples. The potential utilization of the materials as the active sensing materials of surface plasmon resonance biosensors has also been assessed in terms of the estimated value of the penetration depth through a dielectric medium. The results show a reasonable dependence of the optical constant parameters on the solvent type. Higher real part refractive index (n) and real part complex dielectric permittivity (ε') values were observed for the samples prepared using PTSA solution, while higher optical conductivity values were observed for the NMP-based samples due to their relatively higher imaginary part refractive index (k) and imaginary part complex dielectric permittivity (ε″) values. In addition, NMP-based samples show improvement in terms of the penetration depth through a dielectric medium by around 9.5, 1.6, 4.4 and 2.9 times compared to PTSA-based samples for the PANI, PANI-chitosan, PANI-RGO and the ternary composites, respectively. Based on these, it is concluded that preparation of these materials using different dispersion solvents could produce materials of different optical properties. Thus, the variation of the dispersion solvent will allow the flexible utilization of the PANI and the composites for diverse applications.


Subject(s)
Aniline Compounds/chemistry , Benzenesulfonates/chemistry , Pyrrolidinones/chemistry
9.
J Adv Vet Anim Res ; 6(2): 183-192, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31453189

ABSTRACT

OBJECTIVE: The main objective of this study is to isolate, identify, and quantify the active antimicrobial compounds present in the crude aqueous stem bark extract of B. dalzielii using some common pathogenic microorganisms as well as toxicological profile. MATERIAL AND METHODS: Crude aqueous stem bark extract of Boswellia dalzielii (CASEB) was partitioned by preparative thin layer chromatography (PTLC) using chloroform-methanol-water, 8:2:1 (v/v). The resulting bands were extracted using chloroform-methanol (50:50). The extract of each band was evaluated for antimicrobial activity on Streptococcus pyogenes, Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, Klebsiella pneumonia, Pseudomonas aeruginosa, Proteus mirabilis, Salmonella typhi, and Candida albicans by disc diffusion. Compounds in the most antimicrobially bioactive fraction (MAAF) were identified by high performance liquid chromatography (HPLC), Fourier transform infrared spectrophotometry (FT-IR), and gas chromatography-mass spectrometry (GC-MS). Toxicological profile of the CASEB was evaluated by studying its effect in albino Wister rats. RESULTS: PTLC produced five bands/fractions of which the MAAF was identified as RF2-fraction being active against all the isolates except E. coli and K. pneumoniae. HPLC of the MAAF revealed seven components; FT-IR revealed 17 functional groups; GC-MS revealed five compounds of which 93.18% are Oleic acid (44.88%), Squalene (34.16%), and n-Hexadecanoic acid (14.14%). The acute toxicity showed LD50 > 3,000 mg/kg. Sub-chronic toxicity showed that higher doses of the CASEB caused significant changes in liver function indices and a fatty change with lymphocytic infiltration (sign of acute hepatitis) in the liver tissues, but none of these changes were observed in the kidneys. CONCLUSION: The antimicrobially active compounds in CASEB were Oleic acid, Squalene, and n-Hexadecanoic acid. These can be further purified and used as precursors of new antimicrobial agents for treating infections especially those due to fungi and Pseudomonas spp. that are known to resist wide array of antimicrobial agents. The LD50 of CASEB is >3,000 mg/kg in rats. However, long-term consumption of CASEB is associated with significant liver damage.

10.
Microbiome ; 4(1): 67, 2016 Dec 29.
Article in English | MEDLINE | ID: mdl-28034304

ABSTRACT

BACKGROUND: The preterm microbiome is crucial to gut health and may contribute to necrotising enterocolitis (NEC), which represents the most significant pathology affecting preterm infants. From a cohort of 318 infants, <32 weeks gestation, we selected 7 infants who developed NEC (defined rigorously) and 28 matched controls. We performed detailed temporal bacterial (n = 641) and metabolomic (n = 75) profiling of the gut microbiome throughout the disease. RESULTS: A core community of Klebsiella, Escherichia, Staphyloccocus, and Enterococcus was present in all samples. Gut microbiota profiles grouped into six distinct clusters, termed preterm gut community types (PGCTs). Each PGCT reflected dominance by the core operational taxonomic units (OTUs), except of PGCT 6, which had high diversity and was dominant in bifidobacteria. While PGCTs 1-5 were present in infants prior to NEC diagnosis, PGCT 6 was comprised exclusively of healthy samples. NEC infants had significantly more PGCT transitions prior to diagnosis. Metabolomic profiling identified significant pathways associated with NEC onset, with metabolites involved in linoleate metabolism significantly associated with NEC diagnosis. Notably, metabolites associated with NEC were the lowest in PGCT 6. CONCLUSIONS: This is the first study to integrate sequence and metabolomic stool analysis in preterm neonates, demonstrating that NEC does not have a uniform microbial signature. However, a diverse gut microbiome with a high abundance of bifidobacteria may protect preterm infants from disease. These results may inform biomarker development and improve understanding of gut-mediated mechanisms of NEC.


Subject(s)
Bacteria/classification , Enterocolitis, Necrotizing/microbiology , Gastrointestinal Microbiome , Infant, Premature, Diseases/microbiology , Proteomics/methods , Sequence Analysis, DNA/methods , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , DNA, Bacterial/analysis , DNA, Ribosomal/analysis , Enterocolitis, Necrotizing/metabolism , Feces/microbiology , Female , Humans , Infant, Newborn , Infant, Premature , Infant, Premature, Diseases/metabolism , Linoleic Acid/metabolism , Longitudinal Studies , Male , Metabolic Networks and Pathways , Phylogeny , RNA, Ribosomal, 16S/analysis
11.
Early Hum Dev ; 95: 1-2, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26895407

ABSTRACT

Resected gut tissue in necrotising enterocolitis (NEC) has a higher bacterial load than controls. Quantitative PCR was performed on longitudinal NEC and control stool samples (n=72). No significant difference in the total bacterial load was found between samples at diagnosis compared to controls or temporally within NEC.


Subject(s)
Enterocolitis, Necrotizing/microbiology , Feces/microbiology , Infant, Premature , Bacterial Load , Case-Control Studies , Humans , Infant, Newborn , Microbiota
12.
Neonatology ; 109(4): 239-47, 2016.
Article in English | MEDLINE | ID: mdl-26859305

ABSTRACT

BACKGROUND: Probiotics are live microbial supplements that colonize the gut and potentially exert health benefit to the host. OBJECTIVES: We aimed to determine the impact of a probiotic (Infloran®: Lactobacillus acidophilus-NCIMB701748 and Bifidobacterium bifidum-ATCC15696) on the bacterial and metabolic function of the preterm gut while in the neonatal intensive care unit (NICU) and following discharge. METHODS: Stool samples (n = 88) were collected before, during, and after probiotic intake from 7 patients, along with time-matched controls from 3 patients. Samples were also collected following discharge home from the NICU. Samples underwent bacterial profiling analysis by 16S rRNA gene sequencing and quantitative PCR (qPCR), as well as metabolomic profiling using liquid chromatography mass spectrometry. RESULTS: Bacterial profiling showed greater Bifidobacterium (15.1%) and Lactobacillus (4.2%) during supplementation compared to the control group (4.0% and 0%, respectively). While Lactobacillus became reduced after the probiotic had been stopped, Bifidobacterium remained high following discharge, suggestive of successful colonisation. qPCR analysis showed a significant increase (p ≤ 0.01) in B. bifidum in infants who received probiotic treatment compared to controls, but no significant increase was observed for L. acidophilus (p = 0.153). Metabolite profiling showed clustering based on receiving probiotic or matched controls, with distinct metabolites associated with probiotic administration. CONCLUSIONS: Probiotic species successfully colonise the preterm gut, reducing the relative abundance of potentially pathogenic bacteria, and effecting gut functioning. Bifidobacterium (but not Lactobacillus) colonised the gut in the long term, suggesting the possibility that therapeutically administered probiotics may continue to exert important functional effects on gut microbial communities in early infancy.


Subject(s)
Dietary Supplements , Gastrointestinal Microbiome , Infant, Premature , Metabolome , Probiotics/administration & dosage , Bifidobacterium/isolation & purification , Case-Control Studies , Feces/microbiology , Female , Humans , Infant , Infant, Newborn , Lactobacillus/isolation & purification , Male , RNA, Ribosomal, 16S/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...