Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 252: 116130, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38417285

ABSTRACT

Microfluidic systems find widespread applications in diagnostics, biological research, chemistry, and engineering studies. Among their many critical parameters, flow rate plays a pivotal role in maintaining the functionality of microfluidic systems, including droplet-based microfluidic devices and those used in cell culture. It also significantly influences microfluidic mixing processes. Although various flow rate measurement devices have been developed, the challenge remains in accurately measuring flow rates within customized channels. This paper presents the development of a 3D-printed smartphone-based flow velocity meter. The 3D-printed platform is angled at 30° to achieve transparent flow visualization, and it doesn't require any external optical components such as external lenses and filters. Two LED modules integrated into the platform create a uniform illumination environment for video capture, powered directly by the smartphone. The performance of our platform, combined with a customized video processing algorithm, was assessed in three different channel types: uniform straight channels, straight channels with varying widths, and vessel-like channel patterns to demonstrate its versatility. Our device effectively measured flow velocities from 5.43 mm/s to 24.47 mm/s, with video quality at 1080p resolution and 60 frames per second, for which the measurement range can be extended by adjusting the frame rate. This flow velocity meter can be a useful analytical tool to evaluate and enhance microfluidic channel designs of various lab-on-a-chip applications.


Subject(s)
Biosensing Techniques , Microfluidic Analytical Techniques , Optical Devices , Smartphone , Microfluidics , Lab-On-A-Chip Devices
2.
Med Phys ; 50(10): 5969-5977, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37646527

ABSTRACT

PURPOSE: Deep neural nets have revolutionized the science of auto-segmentation and present great promise for treatment planning automation. However, little data exists regarding clinical implementation and human factors. We evaluated the performance and clinical implementation of a novel deep learning-based auto-contouring workflow for 0.35T magnetic resonance imaging (MRI)-guided pelvic radiotherapy, focusing on automation bias and objective measures of workflow savings. METHODS: An auto-contouring model was developed using a UNet-derived architecture for the femoral heads, bladder, and rectum in 0.35T MR images. Training data was taken from 75 patients treated with MRI-guided radiotherapy at our institution. The model was tested against 20 retrospective cases outside the training set, and subsequently was clinically implemented. Usability was evaluated on the first 30 clinical cases by computing Dice coefficient (DSC), Hausdorff distance (HD), and the fraction of slices that were used un-modified by planners. Final contours were retrospectively reviewed by an experienced planner and clinical significance of deviations was graded as negligible, low, moderate, and high probability of leading to actionable dosimetric variations. In order to assess whether the use of auto-contouring led to final contours more or less in agreement with an objective standard, 10 pre-treatment and 10 post-treatment blinded cases were re-contoured from scratch by three expert planners to get expert consensus contours (EC). EC was compared to clinically used (CU) contours using DSC. Student's t-test and Levene's statistic were used to test statistical significance of differences in mean and standard deviation, respectively. Finally, the dosimetric significance of the contour differences were assessed by comparing the difference in bladder and rectum maximum point doses between EC and CU before and after the introduction of automation. RESULTS: Median (interquartile range) DSC for the retrospective test data were 0.92(0.02), 0.92(0.06), 0.93(0.06), 0.87(0.04) for the post-processed contours for the right and left femoral heads, bladder, and rectum, respectively. Post-implementation median DSC were 1.0(0.0), 1.0(0.0), 0.98(0.04), and 0.98(0.06), respectively. For each organ, 96.2, 95.4, 59.5, and 68.21 percent of slices were used unmodified by the planner. DSC between EC and pre-implementation CU contours were 0.91(0.05*), 0.91*(0.05*), 0.95(0.04), and 0.88(0.04) for right and left femoral heads, bladder, and rectum, respectively. The corresponding DSC for post-implementation CU contours were 0.93(0.02*), 0.93*(0.01*), 0.96(0.01), and 0.85(0.02) (asterisks indicate statistically significant difference). In a retrospective review of contours used for planning, a total of four deviating slices in two patients were graded as low potential clinical significance. No deviations were graded as moderate or high. Mean differences between EC and CU rectum max-doses were 0.1 ± 2.6 Gy and -0.9 ± 2.5 Gy for pre- and post-implementation, respectively. Mean differences between EC and CU bladder/bladder wall max-doses were -0.9 ± 4.1 Gy and 0.0 ± 0.6 Gy for pre- and post-implementation, respectively. These differences were not statistically significant according to Student's t-test. CONCLUSION: We have presented an analysis of the clinical implementation of a novel auto-contouring workflow. Substantial workflow savings were obtained. The introduction of auto-contouring into the clinical workflow changed the contouring behavior of planners. Automation bias was observed, but it had little deleterious effect on treatment planning.

3.
Med Phys ; 49(10): 6410-6423, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35962982

ABSTRACT

BACKGROUND: In cone-beam computed tomography (CBCT)-guided radiotherapy, off-by-one vertebral-body misalignments are rare but serious errors that lead to wrong-site treatments. PURPOSE: An automatic error detection algorithm was developed that uses a three-branch convolutional neural network error detection model (EDM) to detect off-by-one vertebral-body misalignments using planning computed tomography (CT) images and setup CBCT images. METHODS: Algorithm training and test data consisted of planning CTs and CBCTs from 480 patients undergoing radiotherapy treatment in the thoracic and abdominal regions at two radiotherapy clinics. The clinically applied registration was used to derive true-negative (no error) data. The setup and planning images were then misaligned by one vertebral-body in both the superior and inferior directions, simulating the most likely misalignment scenarios. For each of the aligned and misaligned 3D image pairs, 2D slice pairs were automatically extracted in each anatomical plane about a point within the vertebral column. The three slice pairs obtained were then inputted to the EDM that returned a probability of vertebral misalignment. One model (EDM1 ) was trained solely on data from institution 1. EDM1 was further trained using a lower learning rate on a dataset from institution 2 to produce a fine-tuned model, EDM2 . Another model, EDM3 , was trained from scratch using a training dataset composed of data from both institutions. These three models were validated on a randomly selected and unseen dataset composed of images from both institutions, for a total of 303 image pairs. The model performances were quantified using a receiver operating characteristic analysis. Due to the rarity of vertebral-body misalignments in the clinic, a minimum threshold value yielding a specificity of at least 99% was selected. Using this threshold, the sensitivity was calculated for each model, on each institution's test set separately. RESULTS: When applied to the combined test set, EDM1 , EDM2 , and EDM3 resulted in an area under curve of 99.5%, 99.4%, and 99.5%, respectively. EDM1 achieved a sensitivity of 96% and 88% on Institution 1 and Institution 2 test set, respectively. EDM2 obtained a sensitivity of 95% on each institution's test set. EDM3 achieved a sensitivity of 95% and 88% on Institution 1 and Institution 2 test set, respectively. CONCLUSION: The proposed algorithm demonstrated accuracy in identifying off-by-one vertebral-body misalignments in CBCT-guided radiotherapy that was sufficiently high to allow for practical implementation. It was found that fine-tuning the model on a multi-facility dataset can further enhance the generalizability of the algorithm.


Subject(s)
Cone-Beam Computed Tomography , Radiotherapy, Image-Guided , Algorithms , Cone-Beam Computed Tomography/methods , Humans , Neural Networks, Computer , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Image-Guided/methods
4.
J Appl Clin Med Phys ; 23(9): e13666, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35950272

ABSTRACT

PURPOSE: The commercial 0.35-T magnetic resonance imaging (MRI)-guided radiotherapy vendor ViewRay recently introduced upgraded real-time imaging frame rates based on compressed sensing techniques. Furthermore, additional motion tracking algorithms were made available. Compressed sensing allows for increased image frame rates but may compromise image quality. To assess the impact of this upgrade on respiratory gating accuracy, we evaluated gated dose distributions pre- and post-upgrade using a motion phantom and radiochromic film. METHODS: Seven motion waveforms (four artificial, two patient-derived free-breathing, and one breath-holding) were used to drive an MRI-compatible motion phantom. A treatment plan was developed to deliver a 3-cm diameter spherical dose distribution typical of a stereotactic body radiotherapy plan. Gating was performed using 4-frames per second (fps) imaging pre-upgrade on the "default" tracking algorithm and 8-fps post-upgrade using the "small mobile targets" (SMT) and "large deforming targets" (LDT) tracking algorithms. Radiochromic film was placed in a moving insert within the phantom to measure dose. The planned and delivered dose distributions were compared using the gamma index with 3%/3-mm criteria. Dose-area histograms were produced to calculate the dose to 95% (D95) of the sphere planning target volume (PTV) and two simulated gross tumor volumes formed by contracting the PTV by 3 and 5 mm, respectively. RESULTS: Gamma pass rates ranged from 18% to 93% over the 21 combinations of breathing trace and gating conditions examined. D95 ranged from 206 to 514 cGy. On average, the LDT algorithm yielded lower gamma and D95 values than the default and SMT algorithms. CONCLUSION: Respiratory gating at 8 fps with the new tracking algorithms provides similar gating performance to the original algorithm with 4 fps, although the LDT algorithm had lower accuracy for our non-deformable target. This indicates that the choice of deformable image registration algorithm should be chosen deliberately based on whether the target is rigid or deforming.


Subject(s)
Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Humans , Magnetic Resonance Spectroscopy , Movement , Particle Accelerators , Phantoms, Imaging , Radiometry/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods
5.
Med Phys ; 49(1): 41-51, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34783027

ABSTRACT

PURPOSE: Accurate and robust auto-segmentation of highly deformable organs (HDOs), for example, stomach or bowel, remains an outstanding problem due to these organs' frequent and large anatomical variations. Yet, time-consuming manual segmentation of these organs presents a particular challenge to time-limited modern radiotherapy techniques such as on-line adaptive radiotherapy and high-dose-rate brachytherapy. We propose a machine-assisted interpolation (MAI) that uses prior information in the form of sparse manual delineations to facilitate rapid, accurate segmentation of the stomach from low field magnetic resonance images (MRI) and the bowel from computed tomography (CT) images. METHODS: Stomach MR images from 116 patients undergoing 0.35T MRI-guided abdominal radiotherapy and bowel CT images from 120 patients undergoing high dose rate pelvic brachytherapy treatment were collected. For each patient volume, the manual delineation of the HDO was extracted from every 8th slice. These manually drawn contours were first interpolated to obtain an initial estimate of the HDO contour. A two-channel 64 × 64 pixel patch-based convolutional neural network (CNN) was trained to localize the position of the organ's boundary on each slice within a five-pixel wide road using the image and interpolated contour estimate. This boundary prediction was then input, in conjunction with the image, to an organ closing CNN which output the final organ segmentation. A Dense-UNet architecture was used for both networks. The MAI algorithm was separately trained for the stomach segmentation and the bowel segmentation. Algorithm performance was compared against linear interpolation (LI) alone and against fully automated segmentation (FAS) using a Dense-UNet trained on the same datasets. The Dice Similarity Coefficient (DSC) and mean surface distance (MSD) metrics were used to compare the predictions from the three methods. Statistically significance was tested using Student's t test. RESULTS: For the stomach segmentation, the mean DSC from MAI (0.91 ± 0.02) was 5.0% and 10.0% higher as compared to LI and FAS, respectively. The average MSD from MAI (0.77 ± 0.25 mm) was 0.54 and 3.19 mm lower compared to the two other methods. Only 7% of MAI stomach predictions resulted in a DSC < 0.8, as compared to 30% and 28% for LI and FAS, respectively. For the bowel segmentation, the mean DSC of MAI (0.90 ± 0.04) was 6% and 18% higher, and the average MSD of MAI (0.93 ± 0.48 mm) was 0.42 and 4.9 mm lower as compared to LI and FAS. Sixteen percent of the predicted contour from MAI resulted in a DSC < 0.8, as compared to 46% and 60% for FAS and LI, respectively. All comparisons between MAI and the baseline methods were found to be statistically significant (p-value < 0.001). CONCLUSIONS: The proposed MAI algorithm significantly outperformed LI in terms of accuracy and robustness for both stomach segmentation from low-field MRIs and bowel segmentation from CT images. At this time, FAS methods for HDOs still require significant manual editing. Therefore, we believe that the MAI algorithm has the potential to expedite the process of HDO delineation within the radiation therapy workflow.


Subject(s)
Image Processing, Computer-Assisted , Radiotherapy, Image-Guided , Humans , Magnetic Resonance Imaging , Neural Networks, Computer , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...