Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(12): 9284-9294, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38469699

ABSTRACT

Sulfur hosts and conversion catalysts based on NiCo-LDHs exhibit potential for improving the performance of Li-S batteries. Nevertheless, their low electron conductivity and aggregation propensity restrict their applicability. This investigation employs a temporary scaffold of ZIF-67 to produce a nanotube assembly of Ni-Co-LDH encapsulated within an N-doped graphene sponge. The electrochemically developed interface has an extended active surface area, and the clumping of LDH nanosheets is effectively inhibited by the design of the nanotube arrangement. Furthermore, the incorporation of nitrogen within the structure of graphene results in a boost of electrical conductivity and provides an increased quantity of active sites. Interfacial electron transport is facilitated by the interfacial rearrangement of charges resulting from p-n heterojunctions and fosters redox activity. In this study, the researchers have presented the double role played by the nickel-cobalt layered double hydroxide (NiCo-LDH) nanotubes in improving the polysulphide (LiPS) conversion and decreasing the movement of the sulphur (S) ions by forming surface-bound intermediates. The battery that was fabricated using the above composite cathode mixture showed a higher energy storage ability, i.e., 1190.0 mA h g-1 at J = 0.2. Furthermore, the battery showed a significantly higher capacity to rapidly supply energy and displayed a rate capacity of 670.1 mA h g-1 at J = 5C. Also, the above battery displayed a longer cycle life, with 1000 charge-discharge cycles and the deterioration rate of 0.029% for each cycle.

2.
RSC Adv ; 10(2): 626-642, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-35494444

ABSTRACT

Deoxygenation processes that exploit milder reaction conditions under H2-free atmospheres appear environmentally and economically effective for the production of green diesel. Herein, green diesel was produced by catalytic deoxygenation of chicken fat oil (CFO) over oxides of binary metal pairs (Ni-Mg, Ni-Mn, Ni-Cu, Ni-Ce) supported on multi-walled carbon nanotubes (MWCNTs). The presence of Mg and Mn with Ni afforded greater deoxygenation activity, with hydrocarbon yields of >75% and n-(C15 + C17) selectivity of >81%, indicating that decarboxylation/decarbonylation (deCOx) of CFO is favoured by the existence of high amount of lower strength strong acidic sites along with noticeable strongly basic sites. Based on a series of studies of different Mg and Mn dosages (5-20 wt%), the oxygen free-rich diesel-range hydrocarbons produced efficiently by Ni10-Mg15/MWCNT and Ni10-Mn5/MWCNT catalysts yielded >84% of hydrocarbons, with n-(C15 + C17) selectivity of >85%. The heating value of the green diesel obtained complied with the ultra-low sulphur diesel standard.

3.
RSC Adv ; 10(9): 4996-5009, 2020 Jan 29.
Article in English | MEDLINE | ID: mdl-35498286

ABSTRACT

Untreated waste cooking oil (WCO) with significant levels of water and fatty acids (FFAs) was deoxygenated over Co3O4-La2O3/ACnano catalysts under an inert flow of N2 in a micro-batch closed system for the production of green diesel. The primary reaction mechanism was found to be the decarbonylation/decarboxylation (deCOx) pathway in the Co3O4-La2O3/ACnano-catalyzed reaction. The effect of cobalt doping, catalyst loading, different deoxygenation (DO) systems, temperature and time were investigated. The results indicated that among the various cobalt doping levels (between 5 and 25 wt%), the maximum catalytic activity was exhibited with the Co : La ratio of 20 : 20 wt/wt% DO under N2 flow, which yielded 58% hydrocarbons with majority diesel-range (n-(C15 + C17)) selectivity (∼63%), using 3 wt% catalyst loading at a temperature of 350 °C within 180 min. Interestingly, 1 wt% of catalyst in the micro-batch closed system yielded 96% hydrocarbons with 93% n-(C15 + C17) selectivity within 60 min at 330 °C, 38.4 wt% FFA and 5% water content. An examination of the WCO under a series of FFA (0-20%) and water contents (0.5-20 wt%) indicated an enhanced yield of green diesel, and increased involvement of the deCOx mechanism. A high water content was found to increase the decomposition of triglycerides into FFAs and promote the DO reaction. The present work demonstrates that WCO with significant levels of water and FFAs generated by the food industry can provide an economical and naturally replenished raw material for the production of diesel.

SELECTION OF CITATIONS
SEARCH DETAIL
...