Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(2)2022 Jan 16.
Article in English | MEDLINE | ID: mdl-35062637

ABSTRACT

Carbon nanomaterials have gained significant interest over recent years in the field of electrochemistry, and they may be limited in their use due to issues with their difficulty in dispersion. Enzymes are prime components for detecting biological molecules and enabling electrochemical interactions, but they may also enhance multiwalled carbon nanotube (MWCNT) dispersion. This study evaluated a MWCNT and diamine oxidase enzyme (DAO)-functionalised screen-printed electrode (SPE) to demonstrate improved methods of MWCNT functionalisation and dispersion. MWCNT morphology and dispersion was determined using UV-Vis spectroscopy (UV-Vis) and scanning electron microscopy (SEM). Carboxyl groups were introduced onto the MWCNT surfaces using acid etching. MWCNT functionalisation was carried out using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and N-Hydroxysuccinimide (NHS), followed by DAO conjugation and glutaraldehyde (GA) crosslinking. Modified C-MWNCT/EDC-NHS/DAO/GA was drop cast onto SPEs. Modified and unmodified electrodes after MWCNT functionalisation were characterised using optical profilometry (roughness), water contact angle measurements (wettability), Raman spectroscopy and energy dispersive X-ray spectroscopy (EDX) (vibrational modes and elemental composition, respectively). The results demonstrated that the addition of the DAO improved MWCNT homogenous dispersion and the solution demonstrated enhanced stability which remained over two days. Drop casting of C-MWCNT/EDC-NHS/DAO/GA onto carbon screen-printed electrodes increased the surface roughness and wettability. UV-Vis, SEM, Raman and EDX analysis determined the presence of carboxylated MWCNT variants from their non-carboxylated counterparts. Electrochemical analysis demonstrated an efficient electron transfer rate process and a diffusion-controlled redox process. The modification of such electrodes may be utilised for the development of biosensors which could be utilised to support a range of healthcare related fields.


Subject(s)
Amine Oxidase (Copper-Containing) , Biosensing Techniques , Nanotubes, Carbon , Electrochemistry , Electrodes
2.
Meat Sci ; 62(4): 473-8, 2002 Dec.
Article in English | MEDLINE | ID: mdl-22061755

ABSTRACT

Investigation of substitution of nitrite by sorbate in mortadella involved preparation of the product with nitrite-sorbate combinations and controls of nitrite and sorbate alone. The results revealed that mortadella samples made with sorbate alone were not sensorily acceptable and had the highest TBA values. Mortadella prepared with nitrite alone was acceptable in all respects but showed the highest percentage of nitrite losses during storage. Nitrite-sorbate combinations were not significantly different with regard to color, flavor, and overall acceptability, compared to nitrite alone. These combinations showed lower TBA values. The study also demonstrated the importance of refrigerated storage for mortadella. Overall, the results indicated that complete nitrite replacement by sorbate is not possible in mortadella, but partial replacement with sorbate is acceptable.

SELECTION OF CITATIONS
SEARCH DETAIL
...