Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 6410, 2024 03 17.
Article in English | MEDLINE | ID: mdl-38494490

ABSTRACT

The present research investigates the double-chain deoxyribonucleic acid model, which is important for the transfer and retention of genetic material in biological domains. This model is composed of two lengthy uniformly elastic filaments, that stand in for a pair of polynucleotide chains of the deoxyribonucleic acid molecule joined by hydrogen bonds among the bottom combination, demonstrating the hydrogen bonds formed within the chain's base pairs. The modified extended Fan sub equation method effectively used to explain the exact travelling wave solutions for the double-chain deoxyribonucleic acid model. Compared to the earlier, now in use methods, the previously described modified extended Fan sub equation method provide more innovative, comprehensive solutions and are relatively straightforward to implement. This method transforms a non-linear partial differential equation into an ODE by using a travelling wave transformation. Additionally, the study yields both single and mixed non-degenerate Jacobi elliptic function type solutions. The complexiton, kink wave, dark or anti-bell, V, anti-Z and singular wave shapes soliton solutions are a few of the creative solutions that have been constructed utilizing modified extended Fan sub equation method that can offer details on the transversal and longitudinal moves inside the DNA helix by freely chosen parameters. Solitons propagate at a consistent rate and retain their original shape. They are widely used in nonlinear models and can be found everywhere in nature. To help in understanding the physical significance of the double-chain deoxyribonucleic acid model, several solutions are shown with graphics in the form of contour, 2D and 3D graphs using computer software Mathematica 13.2. All of the requisite constraint factors that are required for the completed solutions to exist appear to be met. Therefore, our method of strengthening symbolic computations offers a powerful and effective mathematical tool for resolving various moderate nonlinear wave problems. The findings demonstrate the system's potentially very rich precise wave forms with biological significance. The fundamentals of double-chain deoxyribonucleic acid model diffusion and processing are demonstrated by this work, which marks a substantial development in our knowledge of double-chain deoxyribonucleic acid model movements.


Subject(s)
Biological Science Disciplines , Nonlinear Dynamics , Base Pairing , Hydrogen Bonding , DNA/chemistry
2.
Heliyon ; 9(10): e20852, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37916109

ABSTRACT

The analytical soliton solutions place a lot of value on birefringent fibres. The major goal of this study is to generate novel forms of soliton solutions for the Radhakrishnan-Kundu-Lakshmanan equation, which depicts unstable optical solitons that arise from optical propagations using birefringent fibres. The (presumably new) extended direct algebraic (EDA) technique is used here to extract a large number of solutions for RKLE. It gives soliton solutions up to thirty-seven, which essentially correspond to all soliton families. This method's ability to determine many sorts of solutions through a single process is one of its key advantages. Additionally, it is simple to infer that the technique employed in this study is really straightforward yet one of the quite effective approaches to solving nonlinear partial differential equations so, this novel extended direct algebraic (EDA) technique may be regarded as a comprehensive procedure. The resulting solutions are found to be hyperbolic, periodic, trigonometric, bright and dark, combined bright-dark, and W-shaped soliton, and these solutions are visually represented by means of 2D, 3D, and density plots. The present study can be extended to investigate several other nonlinear systems to understand the physical insights of the optical propagations through birefringent fibre.

3.
Heliyon ; 9(9): e19307, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37810099

ABSTRACT

Spline curves are very prominent in the mathematics due to their simple construction, accuracy of assessment and ability to approximate complicated structures into interactive curved designs. A spline is a smooth piece-wise polynomial function. The primary goal of this study is to use extended cubic B-spline (ExCuBS) functions with a new second order derivative approximation to obtain the numerical solution of the weakly singular kernel (SK) non-linear fractional partial integro-differential equation (FPIDE). The spatial and temporal fractional derivatives are discretized by ExCuBS and the Caputo finite difference scheme, respectively. The present study found that it is stable and convergent. The validity of the current approach is examined on a few test problems, and the obtained outcomes are compared with those that have previously been reported in the literature.

4.
AIP Conf Proc ; 1660(1): 050007, 2015 May 15.
Article in English | MEDLINE | ID: mdl-32255874

ABSTRACT

Human immunodeficiency virus and acquired immune deficiency syndrome (HIV/AIDS) is pandemic. It has affected nearly 60 million people since the detection of the disease in 1981 to date. In this paper basic deterministic HIV/AIDS model with mass action incidence function are developed. Stability analysis is carried out. And the disease free equilibrium of the basic model was found to be locally asymptotically stable whenever the threshold parameter (RO) value is less than one, and unstable otherwise. The model is extended by introducing two optimal control strategies namely, CD4 counts and treatment for the infective using optimal control theory. Numerical simulation was carried out in order to illustrate the analytic results.

5.
PLoS One ; 8(5): e64618, 2013.
Article in English | MEDLINE | ID: mdl-23741355

ABSTRACT

The generalized and improved (G'/G)-expansion method is a powerful and advantageous mathematical tool for establishing abundant new traveling wave solutions of nonlinear partial differential equations. In this article, we investigate the higher dimensional nonlinear evolution equation, namely, the (3+1)-dimensional modified KdV-Zakharov-Kuznetsev equation via this powerful method. The solutions are found in hyperbolic, trigonometric and rational function form involving more parameters and some of our constructed solutions are identical with results obtained by other authors if certain parameters take special values and some are new. The numerical results described in the figures were obtained with the aid of commercial software Maple.


Subject(s)
Algorithms , Nonlinear Dynamics , Software , Computer Graphics , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...