Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 275(51): 40539-46, 2000 Dec 22.
Article in English | MEDLINE | ID: mdl-11006268

ABSTRACT

p38 mitogen-activated protein kinases (p38-MAPKs) are activated by cytokines, cellular stresses, growth factors, and hormones. We show here that p38-MAPKs are activated upon stimulation by thyroid-stimulating hormone (TSH) or cAMP. TSH caused the phosphorylation of p38-MAPK in Chinese hamster ovary cells stably transfected with the human TSH receptor but not in wild-type Chinese hamster ovary cells. The effect of TSH was fully mimicked by the adenylyl cyclase activator, forskolin, and by a permeant analog of cAMP. The effect of forskolin was reproduced in FRTL5 rat thyroid cells. TSH also stimulated the phosphorylation of MAPK kinase 3 or 6, over the same time scale as that of p38-MAPKs. TSH and forskolin stimulated the activity of the alpha-isoform of p38-MAPK assayed by phosphorylation of the transcription factor ATF2. The activity of MAPK-activated protein kinase-2 was stimulated by TSH and forskolin. This stimulation was abolished by SB203580, a specific inhibitor of p38-MAPKs. The protein kinase A inhibitor H89 inhibited the stimulation of phosphorylation of p38-MAPKs by forskolin, whereas inhibitors of protein kinase C, p70(S6k), and phosphatidylinositol 3-kinase were ineffective. Expression of the dominant negative form of Rac1, but not that of Ras, blocked forskolin-induced p38-MAPK activation. Diphenylene iodonium, a potent inhibitor of NADPH oxidase(s), and ascorbic acid, an effective free radical scavenger, suppressed TSH- or forskolin-stimulated p38-MAPK phosphorylation, indicating that the generation of reactive oxygen species plays a key role in signaling from cAMP to p38-MAPKs. Inhibition of the p38-MAPK pathway with SB203580 partially but significantly, attenuates cAMP- and TSH-induced expression of the sodium iodide symporter in FRTL-5 cells. These results point to a new signaling pathway for the G(s)-coupled TSH receptor, involving cAMP, protein kinase A, Rac1, and reactive oxygen species and resulting in the activation of a signaling kinase cascade that includes MAPK kinase 3 or 6, p38-MAPK, and MAPK-activated protein kinase-2.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP/physiology , Mitogen-Activated Protein Kinases/metabolism , Reactive Oxygen Species/metabolism , Sulfonamides , Thyrotropin/physiology , rac1 GTP-Binding Protein/metabolism , Animals , CHO Cells , Cell Line , Cricetinae , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Enzyme Activation , Enzyme Inhibitors/pharmacology , Indoles/pharmacology , Isoquinolines/pharmacology , Maleimides/pharmacology , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Phosphorylation , Rats , p38 Mitogen-Activated Protein Kinases
SELECTION OF CITATIONS
SEARCH DETAIL
...