Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 227: 115717, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36963716

ABSTRACT

Microplastics (MPs) with the size of 1 µm-5 mm are pollutants of great concern ubiquitously found in the environment. Existing efforts have found that most of the MPs present in the seas mainly originated from land via riverine inputs. Asian rivers are known to be among the top in microplastic emissions. However, field data are scarce, especially in Malaysia. This study presents the distribution and characteristics of MPs in the surface water of two major river basins of Malaysia, namely Langat River (West Coast/Straits of Malacca) and Kelantan River (East Coast/South China Sea). Water samples were collected at 21-22 locations in Kelantan and Langat rivers, covering the river, estuary and sea. MPs were physically classified based on sizes, shapes, colours and surface morphology (SEM-EDS). The average of 179.6 items/L and 1464.8 items/L of MPs had been quantified from Kelantan and Langat rivers, respectively. Fibre (91.90%) was highly recorded at Kelantan, compared to Langat whereby both fibre (59.21%) and fragment (38.87%) were prevalence. Anthropogenic activities and urbanised areas contribute to high microplastic abundance, especially in the Langat River. Micro-FTIR analysis identified 14 polymers in Kelantan River, whereas 20 polymers were found in Langat River. Polypropylene, polyethylene, polyethylene terephthalate, nylon, phenoxy resins, poly(methyl acrylate), poly(methyl methacrylate), polystyrene, polytetrafluoroethylene, polyurethane and rayon were discovered in both rivers, although only polyethylene was significant (>1 ppm) when further analysed using pyrolysis-GC/MS. Correlation analysis and multiple linear regression were used to explain the relationship between water quality and MP abundance, suggesting only turbidity was positively significant to the microplastic occurrence. This comprehensive study is first to suggest a full-scale monitoring protocol for MPs in Malaysian riverine system and is significant in understanding MPs abundance in correlation to in-situ environmental factors. Consequently, this will allow the right authorities to develop mitigation strategies to address riverine plastic pollution in major river basins in Malaysia and the South East Asia.


Subject(s)
Microplastics , Water Pollutants, Chemical , Microplastics/analysis , Plastics/analysis , Rivers , Malaysia , Environmental Monitoring/methods , Polyethylene/analysis , Water Pollutants, Chemical/analysis
2.
Membranes (Basel) ; 12(10)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36295717

ABSTRACT

This paper presents a comprehensive study of the performance of a newly developed titania nanotube incorporated RO membrane for endocrine-disrupting compound (EDC) removal at a low concentration. EDCs are known as an emerging contaminant, and if these pollutants are not properly removed, they can enter the water cycle and reach the water supply for residential use, causing harm to human health. Reverse osmosis (RO) has been known as a promising technology to remove EDCs. However, there is a lack of consensus on their performance, especially on the feed concentrations of EDC that vary from one source to another. In this study, polyamide thin-film composite (PA TFC) membrane was incorporated with one-dimensional titania nanotube (TNT) to mitigate trade-off between water permeability and solute rejection of EDC. The characterization indicated that the membrane surface hydrophilicity has been greatly increased with the presence of TNT. Using bisphenol A (BPA) and caffeine as model EDC, the removal efficiencies of the pristine TFC and thin-film nanocomposite (TFN) membranes were evaluated. Compared to TFC membrane, the membrane modified with 0.01% of TNT exhibited improved permeability of 50% and 49% for BPA and caffeine, respectively. A satisfactory BPA rejection of 89.05% and a caffeine rejection of 97.89% were achieved by the TNT incorporated TFN membranes. Furthermore, the greater hydrophilicity and smoother surface of 0.01 TFN membrane led to lower membrane fouling tendency under long-term filtration.

3.
Chemosphere ; 305: 135151, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35654232

ABSTRACT

Hazardous micropollutants (MPs) such as pharmaceutically active compounds (PhACs), pesticides and personal care products (PCPs) have emerged as a critical concern nowadays for acquiring clean and safe water resources. In the last few decades, innumerable water treatment methods involving biodegradation, adsorption and advanced oxidation process have been utilized for the removal of MPs. Of these methods, membrane technology has proven to be a promising technique for the removal of MPs due to its sustainability, high efficiency and cost-effectiveness. Herein, the aim of this article is to provide a comprehensive review regarding the MPs rejection mechanisms of reverse osmosis (RO) and nanofiltration (NF) membranes after incorporation of nanomaterials and also surface modification atop the PA layer. Size exclusion, adsorption and electrostatic charge interaction mechanisms play important roles in governing the MP removal rate. In addition, this review also discusses the state-of-the-art research on the surface modification of thin film composite (TFC) membrane and nanomaterials-incorporated thin film nanocomposite (TFN) membrane in enhancing MPs removal performance. It is hoped that this review can provide insights in modifying the physicochemical properties of NF and RO membranes to achieve better performance in water treatment process, particularly for the removal of emerging hazardous substances.


Subject(s)
Nanocomposites , Water Purification , Filtration/methods , Membranes, Artificial , Nanocomposites/chemistry , Osmosis , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...