Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Discov Nano ; 19(1): 105, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907852

ABSTRACT

Late blight, caused by Phytophthora infestans, is a major potato disease globally, leading to significant economic losses of $6.7 billion. To address this issue, we evaluated the antifungal activity of ZnO and CuO nanoparticles (NPs) against P. infestans for the first time in laboratory and greenhouse conditions. Nanoparticles were synthesized via a chemical precipitation method and characterized using various techniques. The XRD results revealed that the synthesized ZnO nanoparticles had a pure hexagonal wurtzite crystalline structure, whereas the CuO NPs had a monoclinic crystalline structure. TEM images confirmed the synthesis of quasi-spherical nanoparticles with an average size of 11.5 nm for ZnO NPs and 24.5 nm for CuO NPs. The UV-Vis Spectral Report showed peaks corresponding to ZnO NPs at 364 nm and 252 nm for CuO NPs.In an in vitro study, both ZnO and CuO NPs significantly (p < 0.05) inhibited the radial growth of P. infestans at all tested concentrations compared to the untreated control. The highest inhibitory effect of 100% was observed with ZnO and CuO NPs at 30 mg/L. A lower inhibition of 60.4% was observed with 10 mg/L CuO NPs. Under greenhouse conditions, 100 mg/L ZnO NPs was the most effective treatment for controlling potato late blight, with an efficacy of 71%. CuO NPs at 100 mg/L followed closely, with an efficacy of 69%. Based on these results, ZnO and CuO NPs are recommended as promising eco-friendly fungicides for the management and control of potato late blight after further research.

2.
Sci Rep ; 13(1): 16365, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37773211

ABSTRACT

Late blight, caused by Phytophthora infestans, is one of the most destructive potato diseases in the world. In Yemen, identification of P. infestans still depends on a visual survey and external examination of late blight symptoms. The objective of this study was to isolate and identify P. infestans by using advanced methods. We collected 71 disease samples and isolated the pathogen using the tuber slice method. To identify an isolated pathogen, we performed morphological characterization and gene sequence analysis of the coding genes for internal transcribed spacers. We used Koch's hypotheses to confirm the previous results. In our study. The morphological characters of the mycelium pattern of P. infestans isolates in Yemen were profusely branching, fluffy, and white. The sporangia showed remarkable limoniform papillate sporangial shape. with average length and width of 30.6 and 28.6 µm, respectively. The sequences analysis showed high homology with a degree of identity ranging from 98 to 100% to the database sequences on GenBank. Pathogenicity tests showed that the P. infestans was the causal agent. To our knowledge, this is the first study of the isolation and characterization of P. infestans in Yemen.


Subject(s)
Phytophthora infestans , Solanum tuberosum , Phytophthora infestans/genetics , Solanum tuberosum/genetics , Yemen
SELECTION OF CITATIONS
SEARCH DETAIL
...