Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Affect Disord ; 257: 331-339, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31302522

ABSTRACT

BACKGROUND: Although growing evidence indicates that ECT affects astrocytes, the exact mechanisms of the therapeutic effect of ECT are still unknown. Astrocytic endfeet express the water channel aquaporin (AQP) 4 abundantly and ensheath brain blood vessels to form gliovascular units. It has been shown that the coverage of blood vessels by AQP4-immunostained endfeet is decreased in the prefrontal cortex (PFC) of patients with major depression. This study was made to determine whether ECT restores the astrocytic coverage of blood vessels with amelioration of depressive symptoms. METHODS: After electroconvulsive shock (ECS) administration to rats, the forced swimming test (FST) and Y-maze test were performed. Subsequently, immunofluorescence analysis was conducted to measure the coverage of blood vessels by astrocytic endfeet in the PFC and hippocampus by using the endothelial cell marker lectin and anti-AQP4 antibody. We also performed Western blot to examine the effects of ECS on the hippocampal expression of AQP4 and the tight junction molecule claudin-5. RESULTS: Gunn rats showed learned helplessness and impaired spatial working memory, compared to normal control Wistar rats. ECS significantly improved the depressive-like behavior. Gunn rats showed a decrease in astrocytic coverage of blood vessels, that was significantly increased by ECS. ECS significantly increased expression of AQP4 and claudin-5 in Gunn rats. CONCLUSIONS: ECS increased the reduced coverage of blood vessels by astrocytic endfeet in the mPFC and hippocampus with amelioration of depressive-like behavior. Therefore, therapeutic mechanism of ECT may involve restoration of the impaired gliovascular units by increasing the astrocytic-endfoot coverage of blood vessels.


Subject(s)
Astrocytes/metabolism , Depression/metabolism , Electroshock , Memory Disorders/metabolism , Animals , Depressive Disorder, Major/metabolism , Hippocampus/metabolism , Humans , Male , Maze Learning , Prefrontal Cortex/metabolism , Rats , Rats, Gunn , Rats, Wistar
2.
Brain Behav ; 8(8): e01028, 2018 08.
Article in English | MEDLINE | ID: mdl-29953737

ABSTRACT

INTRODUCTION: Recent studies imply that glial activation plays a role in the pathogenesis of psychiatric disorders, such as schizophrenia and major depression. We previously demonstrated that Gunn rats with hyperbilirubinemia show congenital gliosis and schizophrenia-like behavior. METHODS: As it has been suggested that major depression involves glial activation associated with neuroinflammation, we examined whether Gunn rats show depression-like behavior using the forced swimming test (FST) and the tail suspension test (TST). In addition, we quantitatively evaluated both microgliosis and astrogliosis in the hippocampus of Gunn rats using immunohistochemistry analysis of the microglial marker ionized calcium-binding adaptor molecule (Iba) 1 and the astrocytic marker S100B. RESULTS: Both the FST and TST showed that immobility time of Gunn rats was significantly longer than that of normal control Wistar rats, indicating that Gunn rats are somewhat helpless, a sign of depression-like behavior. In the quantification of immunohistochemical analysis, Iba1immunoreactivity in the dentate gyrus (DG), cornu ammonis (CA) 1, and CA3 and the number of Iba1-positive cells in the CA1 and CA3 were significantly increased in Gunn rats compared to Wistar rats. S100B immunoreactivity in the DG, CA1, and CA3 and the number of S100B-positive cells in the DG and CA3 were significantly increased in Gunn rats compared to Wistar rats. CONCLUSION: Our findings suggest that both microglia and astrocyte are activated in Gunn rats and their learned helplessness could be related to glial activation.


Subject(s)
Astrocytes/physiology , Depressive Disorder, Major , Gliosis/metabolism , Microglia/physiology , Schizophrenia , Animals , Depressive Disorder, Major/metabolism , Depressive Disorder, Major/physiopathology , Disease Models, Animal , Hindlimb Suspension/methods , Hippocampus/physiology , Immunohistochemistry , Male , Rats , Rats, Gunn , Rats, Wistar , Schizophrenia/metabolism , Schizophrenia/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...