Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int J Dermatol ; 61(5): 541-547, 2022 May.
Article in English | MEDLINE | ID: mdl-34363608

ABSTRACT

Skin is a dynamic interface between the external environment and internal organs. It has high turnover that allows the renewal of dead skin cells, thus maintaining a healthy skin homeostasis. Mitochondria fulfills all the energy needs for these cells. In addition, mitochondria are an active source of free radicals that have been determined as crucially important in skin health and disease. The common notion of limited role of mitochondria as merely the cellular powerhouse has drastically changed. Several extracellular stressors have proved to induce impairment in the dynamic properties of mitochondria such as fusion and fission, which further leads to an activation of selective autophagic response known as mitophagy. Altered mitochondrial dynamics have been lately associated with skin photodamage and cutaneous manifestations of several diseased states, thereby suggesting it to be an effective therapeutic target. This review summarizes the molecular mechanisms involved with impaired mitochondrial dynamics and its potential role in skin health and disease.


Subject(s)
Mitochondrial Dynamics , Mitophagy , Homeostasis , Humans , Mitochondria , Skin
2.
Biomedicines ; 9(6)2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34199484

ABSTRACT

Breast cancer (BC) is the second most frequent cause of death among women. Representing a complex and heterogeneous type of cancer, its occurrence is attributed by both genetic (gene mutations, e.g., BRCA1, BRCA2) and non-genetic (race, ethnicity, etc.) risk factors. The effectiveness of available treatment regimens (small molecules, cytotoxic agents, and inhibitors) decreased due to their poor penetration across biological barriers, limited targeting, and rapid body clearance along with their effect on normal resident cells of bone marrow, gastrointestinal tract, and hair follicles. This significantly reduced their clinical outcomes, which led to an unprecedented increase in the number of cases worldwide. Nanomedicine, a nano-formulation of therapeutics, emerged as a versatile delivering module for employment in achieving the effective and target specific delivery of pharmaceutical payloads. Adoption of nanotechnological approaches in delivering therapeutic molecules to target cells ensures not only reduced immune response and toxicity, but increases the stability of therapeutic entities in the systemic circulation that averts their degradation and as such increased extravasations and accumulation via enhanced permeation and the retention (EPR) effect in target tissues. Additionally, nanoparticle (NP)-induced ER stress, which enhances apoptosis and autophagy, has been utilized as a combative strategy in the treatment of cancerous cells. As nanoparticles-based avenues have been capitalized to achieve better efficacy of the new genera of therapeutics with enhanced specificity and safety, the present study is aimed at providing the fundamentals of BC, nanotechnological modules (organic, inorganic, and hybrid) employed in delivering different therapeutic molecules, and mechanistic insights of nano-ER stress induced apoptosis and autophagy with a perspective of exploring this avenue for use in the nano-toxicological studies. Furthermore, the current scenario of USA FDA approved nano-formulations and the future perspective of nanotechnological based interventions to overcome the existing challenges are also discussed.

3.
Front Aging Neurosci ; 9: 317, 2017.
Article in English | MEDLINE | ID: mdl-29033828

ABSTRACT

Exosomes are small membranous entities of endocytic origin. Their production by a wide variety of cells in eukaryotes implicates their roles in the execution of essential processes, especially cellular communication. Exosomes are secreted under both physiological and pathophysiological conditions, and their actions on neighboring and distant cells lead to the modulations of cellular behaviors. They also assist in the delivery of disease causing entities, such as prions, α-syn, and tau, and thus, facilitate spread to non-effected regions and accelerate the progressions of neurodegenerative diseases. The characterization of exosomes, provides information on aberrant processes, and thus, exosome analysis has many clinical applications. Because they are associated with the transport of different cellular entities across the blood-brain barrier (BBB), exosomes might be useful for delivering drugs and other therapeutic molecules to brain. Herein, we review roles played by exosomes in different neurodegenerative diseases, and the possibilities of using them as diagnostic biomarkers of disease progression, drug delivery vehicles and in gene therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...