Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-512927

ABSTRACT

A series of SARS-CoV-2 variants of concern (VOCs) have evolved in humans during the COVID-19 pandemic--Alpha, Beta, Gamma, Delta, and Omicron. Here, we used global proteomic and genomic analyses during infection to understand the molecular responses driving VOC evolution. We discovered VOC-specific differences in viral RNA and protein expression levels, including for N, Orf6, and Orf9b, and pinpointed several viral mutations responsible. An analysis of the host response to VOC infection and comprehensive interrogation of altered virus-host protein-protein interactions revealed conserved and divergent regulation of biological pathways. For example, regulation of host translation was highly conserved, consistent with suppression of VOC replication in mice using the translation inhibitor plitidepsin. Conversely, modulation of the host inflammatory response was most divergent, where we found Alpha and Beta, but not Omicron BA.1, antagonized interferon stimulated genes (ISGs), a phenotype that correlated with differing levels of Orf6. Additionally, Delta more strongly upregulated proinflammatory genes compared to other VOCs. Systematic comparison of Omicron subvariants revealed BA.5 to have evolved enhanced ISG and proinflammatory gene suppression that similarly correlated with Orf6 expression, effects not seen in BA.4 due to a mutation that disrupts the Orf6-nuclear pore interaction. Our findings describe how VOCs have evolved to fine-tune viral protein expression and protein-protein interactions to evade both innate and adaptive immune responses, offering a likely explanation for increased transmission in humans. One sentence summarySystematic proteomic and genomic analyses of SARS-CoV-2 variants of concern reveal how variant-specific mutations alter viral gene expression, virus-host protein complexes, and the host response to infection with applications to therapy and future pandemic preparedness.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-22269794

ABSTRACT

Virus-like particle (VLP) and live virus assays were used to investigate neutralizing immunity to Delta and Omicron SARS-CoV-2 variants in 239 samples from 125 fully vaccinated individuals. In uninfected, non-boosted individuals, VLP neutralization titers to Delta and Omicron were reduced 2.7-fold and 15.4-fold, respectively, compared to wild-type (WT), while boosted individuals (n=23) had 18-fold increased titers. Delta breakthrough infections (n=39) had 57-fold and 3.1-fold titers whereas Omicron breakthrough infections (n=14) had 5.8-fold and 0.32-fold titers compared to uninfected non-boosted and boosted individuals, respectively. The difference in titers (p=0.049) was related to a higher proportion of moderate to severe infections in the Delta cohort (p=0.014). Correlation of neutralizing and spike quantitative antibody titers was decreased with Delta or Omicron compared to WT. Neutralizing antibodies in Delta and Omicron breakthrough infections increase overall, but the relative magnitude of increase is greater in more clinically severe infection and against the specific infecting variant.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-22269243

ABSTRACT

SARS-CoV-2 Delta and Omicron strains are the most globally relevant variants of concern (VOCs). While individuals infected with Delta are at risk to develop severe lung disease1, Omicron infection causes less severe disease, mostly upper respiratory symptoms2,3. The question arises whether rampant spread of Omicron could lead to mass immunization, accelerating the end of the pandemic. Here we show that infection with Delta, but not Omicron, induces broad immunity in mice. While sera from Omicron-infected mice only neutralize Omicron, sera from Delta-infected mice are broadly effective against Delta and other VOCs, including Omicron. This is not observed with the WA1 ancestral strain, although both WA1 and Delta elicited a highly pro-inflammatory cytokine response and replicated to similar titers in the respiratory tracts and lungs of infected mice as well as in human airway organoids. Pulmonary viral replication, pro-inflammatory cytokine expression, and overall disease progression are markedly reduced with Omicron infection. Analysis of human sera from Omicron and Delta breakthrough cases reveals effective cross-variant neutralization induced by both viruses in vaccinated individuals. Together, our results indicate that Omicron infection enhances preexisting immunity elicited by vaccines, but on its own may not induce broad, cross-neutralizing humoral immunity in unvaccinated individuals.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-455082

ABSTRACT

Newly evolved SARS-CoV-2 variants are driving ongoing outbreaks of COVID-19 around the world. Efforts to determine why these viral variants have improved fitness are limited to mutations in the viral spike (S) protein and viral entry steps using non-SARS-CoV-2 viral particles engineered to display S. Here we show that SARS-CoV-2 virus-like particles can package and deliver exogenous transcripts, enabling analysis of mutations within all structural proteins and rapid dissection of multiple steps in the viral life cycle. Identification of an RNA packaging sequence was critical for engineered transcripts to assemble together with SARS-CoV-2 structural proteins S, nucleocapsid (N), membrane (M) and envelope (E) into non-replicative SARS-CoV-2 virus-like particles (SC2-VLPs) that deliver these transcripts to ACE2- and TMPRSS2-expressing cells. Using SC2-VLPs, we tested the effect of 30 individual mutations within the S and N proteins on particle assembly and entry. While S mutations unexpectedly did not affect these steps, SC2-VLPs bearing any one of four N mutations found universally in more-transmissible viral variants (P199L, S202R, R203M and R203K) showed increased particle production and up to 10-fold more reporter transcript expression in receiver cells. Our study provides a platform for rapid testing of viral variants outside a biosafety level 3 setting and identifies viral N mutations and viral particle assembly as mechanisms to explain the increased spread of current viral variants, including Delta (N:R203M). One-Sentence SummaryR203M substitution within SARS-CoV-2 N, found in delta variant, improves RNA packaging into virus-like particles by 10-fold.

SELECTION OF CITATIONS
SEARCH DETAIL
...