Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
BMC Infect Dis ; 24(1): 462, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698313

ABSTRACT

BACKGROUND: Neglected tropical diseases (NTDs) such as leprosy, lymphatic filariasis (LF), schistosomiasis and onchocerciasis are endemic in several African countries. These diseases can lead to severe pain and permanent disability, which can negatively affect the economic productivity of the affected person(s), and hence resulting into low economic performance at the macrolevel. Nonetheless, empirical evidence of the effects of these NTDs on economic performance at the macrolevel is sparse. This study therefore investigates the effects of the above-mentioned NTDs on economic performance at the macrolevel in Africa. METHODS: The study employs a panel design with data comprising 24 to 45 African countries depending on the NTD in question, over the period, 2002 to 2019. Gross domestic product (GDP) is used as the proxy for economic performance (Dependent variable) and the prevalence of the above-mentioned NTDs are used as the main independent variables. The random effects (RE), fixed effects (FE) and the instrumental variable fixed effects (IVFE) panel data regressions are used as estimation techniques. RESULTS: We find that, an increase in the prevalence of the selected NTDs is associated with a fall in economic performance in the selected African countries, irrespective of the estimation technique used. Specifically, using the IVFE regression estimates, we find that a percentage increase in the prevalence of leprosy, LF, schistosomiasis and onchocerciasis is associated with a reduction in economic performance by 0.43%, 0.24%, 0.28% and 0.36% respectively, at either 1% or 5% level of significance. CONCLUSION: The findings highlight the need to increase attention and bolster integrated efforts or measures towards tackling these diseases in order to curb their deleterious effects on economic performance. Such measures can include effective mass drug administration (MDA), enhancing access to basic drinking water and sanitation among others.


Subject(s)
Neglected Diseases , Tropical Medicine , Neglected Diseases/epidemiology , Neglected Diseases/economics , Humans , Africa/epidemiology , Tropical Medicine/economics , Schistosomiasis/epidemiology , Schistosomiasis/economics , Leprosy/epidemiology , Leprosy/economics , Prevalence , Onchocerciasis/epidemiology , Onchocerciasis/economics , Gross Domestic Product , Elephantiasis, Filarial/epidemiology , Elephantiasis, Filarial/economics
2.
Article in English | MEDLINE | ID: mdl-38558274

ABSTRACT

The present study aimed to investigate the chemical profile, antioxidant, and enzyme inhibition properties of extracts from fruits and aerial parts (leaves and twigs) of Tamarix aphylla and T. senegalensis. Hexane, dichloromethane, ethyl acetate (EtOAc), and methanol extracts were prepared sequentially by maceration. Results revealed that EtOAc extracts of T. senegalensis and T. aphylla fruits contained the highest total phenolic content (113.74 and 111.21 mg GAE/g) while that of T. senegalensis (38.47 mg RE/g) recorded the highest total flavonoids content. Among the quantified compounds; ellagic, gallic, 3-hydroxybenzoic, caffeic, syringic, p-coumaric acids, isorhamnetin, procyanidin B2, and kaempferol were the most abundant compounds in the two species. EtOAc extracts of the two organs of T. senegalensis in addition to MeOH extract of T. aphylla aerial parts displayed the highest chelating power (21.00-21.30 mg EDTAE/g, p > 0.05). The highest anti-AChE (3.11 mg GALAE/g) and anti-BChE (3.62 mg GALAE/g) activities were recorded from the hexane and EtOAc extracts of T. senegalensis aerial parts and fruits, respectively. EtOAc extracts of the fruits of the two species exerted the highest anti-tyrosinase (anti-Tyr) activity (99.44 and 98.65 mg KAE/g, p > 0.05). Also, the EtOAc extracts of the both organs of the two species exhibited highest anti-glucosidase activity (0.88-0.90 mmol ACAE/g, p > 0.05) while the best anti-α-amylase activity was recorded from the dichloromethane extract of T. senegalensis fruits (0.74 mmol ACAE/g). In this study, network pharmacology was employed to examine the connection between compounds from Tamarix and their potential effectiveness against Alzheimer's disease. The compounds demonstrated potential interactions with pivotal genes including APP, GSK3B, and CDK5, indicating a therapeutic potential. Molecular docking was carried out to understand the binding mode and interaction of the compounds with the target enzymes. Key interactions observed, such as H-bonds, promoted the binding, and weaker ones, such as van der Waals attractions, reinforced it. These findings suggest that these two Tamarix species possess bioactive properties with health-promoting effects.

3.
Sensors (Basel) ; 24(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38676279

ABSTRACT

This study uses a wind turbine case study as a subdomain of Industrial Internet of Things (IIoT) to showcase an architecture for implementing a distributed digital twin in which all important aspects of a predictive maintenance solution in a DT use a fog computing paradigm, and the typical predictive maintenance DT is improved to offer better asset utilization and management through real-time condition monitoring, predictive analytics, and health management of selected components of wind turbines in a wind farm. Digital twin (DT) is a technology that sits at the intersection of Internet of Things, Cloud Computing, and Software Engineering to provide a suitable tool for replicating physical objects in the digital space. This can facilitate the implementation of asset management in manufacturing systems through predictive maintenance solutions leveraged by machine learning (ML). With DTs, a solution architecture can easily use data and software to implement asset management solutions such as condition monitoring and predictive maintenance using acquired sensor data from physical objects and computing capabilities in the digital space. While DT offers a good solution, it is an emerging technology that could be improved with better standards, architectural framework, and implementation methodologies. Researchers in both academia and industry have showcased DT implementations with different levels of success. However, DTs remain limited in standards and architectures that offer efficient predictive maintenance solutions with real-time sensor data and intelligent DT capabilities. An appropriate feedback mechanism is also needed to improve asset management operations.

4.
Inquiry ; 61: 469580241248101, 2024.
Article in English | MEDLINE | ID: mdl-38685826

ABSTRACT

In Ghana, malaria remains the number 1 reason for outpatient department visits, making it a major public health problem. Thus, there could be significant lost productivity days as a result of malaria morbidity and mortality, which could negatively affect economic output at the macrolevel. Nonetheless, there is a dearth of empirical evidence of the effect of malaria on macroeconomic output in Ghana. This study therefore aims to provide the foremost empirical evidence regarding the effect of malaria prevalence on macroeconomic output in Ghana using a time series design with data spanning the period 1990 to 2019. Gross Domestic Product (GDP), serving as a proxy for macroeconomic output, is the dependent variable, while the prevalence of malaria (overall, among only males and among only females) serves as the main independent variable. The Ordinary Least Square (OLS) regression is used as the baseline estimation technique and the Instrumental Variable Two-Stage Least Square (IV2SLS) regression is employed as the robustness check estimator due to its ability to deal with endogeneity. The IV2SLS regression results show that a percentage increase in the overall prevalence of malaria is associated with a 1.16% decrease in macroeconomic output at 1% significance level. We also find that the effect of malaria in males on macroeconomic output is slightly higher relative to females. The findings from the OLS regression are not qualitatively different from the IV2SLS regression estimates. There is therefore the need to strengthen efforts such as quality case management, larval source management, mass distribution of long-lasting insecticide-treated bed nets, social behavior change, surveillance (both epidemiological and entomological), intermittent preventive treatment of malaria in pregnancy, research among others, which are important toward eliminating malaria.


Subject(s)
Malaria , Humans , Ghana/epidemiology , Malaria/epidemiology , Prevalence , Female , Male , Gross Domestic Product/statistics & numerical data , Sex Factors
5.
Small ; 20(23): e2305789, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38482934

ABSTRACT

Designing highly active and robust catalysts for the oxygen evolution reaction is key to improving the overall efficiency of the water splitting reaction. It has been previously demonstrated that evaporation induced self-assembly (EISA) can be used to synthesize highly porous and high surface area cerate-based fluorite nanocatalysts, and that substitution of Ce with 50% rare earth (RE) cations significantly improves electrocatalyst activity. Herein, the defect structure of the best performing nanocatalyst in the series are further explored, Nd2Ce2O7, with a combination of neutron diffraction and neutron pair distribution function analysis. It is found that Nd3 + cation substitution for Ce in the CeO2 fluorite lattice introduces higher levels of oxygen Frenkel defects and induces a partially reduced RE1.5Ce1.5O5 + x phase with oxygen vacancy ordering. Significantly, it is demonstrated that the concentration of oxygen Frenkel defects and improved electrocatalytic activity can be further enhanced by increasing the compositional complexity (number of RE cations involved) in the substitution. The resulting novel compositionally-complex fluorite- (La0.2Pr0.2Nd0.2Tb0.2Dy0.2)2Ce2O7 is shown to display a low OER overpotential of 210 mV at a current density of 10 mAcm-2 in 1M KOH, and excellent cycling stability. It is suggested that increasing the compositional complexity of fluorite nanocatalysts expands the ability to tailor catalyst design.

6.
Food Chem ; 447: 138910, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38479143

ABSTRACT

Hydrophilic, lipophilic extracts and essential oil of four hops varieties from Slovenia were examined in this study. Lipophilic extracts were obtained by supercritical extraction (SFE), while for hydrophilic extracts ultrasound and microwave extraction were employed. Essential oils were isolated by the hydrodistillation process. The lipophilic composition of essential oils and lipophilic extracts was determined by GC-MS analysis. Monoterpenes and sesquiterpene hydrocarbons were the most abundant class of compounds in oils (62.27-79.65 %), with myrcene being the most abundant constituent. Limonene and trans-caryophyllene were two terpenes determined in all essential oils while only trans-caryophyllene was detected in SFE samples. Antioxidant, antimicrobial, and cytotoxic activity, determined by applying in vitro assays, was more influenced by extraction technique than by varieties. Molecular docking was carried out to gain insight into the potential cancer protein targets BCL-2 and MMP9, whereby humulene epoxide II displayed good binding configuration within the cavities of the two proteins.


Subject(s)
Humulus , Oils, Volatile , Polycyclic Sesquiterpenes , Humulus/chemistry , Molecular Docking Simulation , Oils, Volatile/chemistry , Terpenes/chemistry
7.
Fitoterapia ; 174: 105835, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38301936

ABSTRACT

Plant species C. majus, which is a very rich source of secondary metabolites, was used to obtain extracts, using a conventional extraction technique. For the extraction of bioactive molecules, three solvents were used: ethyl acetate, methanol and water, which differ from each other based on their polarity. The obtained extracts were examined in terms of chemical composition, antioxidant, enzyme inhibitory activity, and cytotoxic effects. The research results indicate that methanol was a better and more efficient extractant in the process of isolating bioactive compounds than ethyl acetate and water. The chemical composition of this solvent, i.e. its polarity, contributed the most to the extraction of alkaloids and flavonoids. The high content of total phenolic compounds in the methanol extract, as well as individual alkaloids, caused a very strong antioxidant activity, as well as a strong inhibitory power when it comes to inhibiting the excessive activity of cholinesterase and tyrosinase. Methanol and ethyl acetate extracts achieved very good cytotoxic activity against cancerous cells HGC-27 and HT-29 and did not exert a toxic effect on non-cancerous cell lines (HEK293). Extracts of plant species C. majus, especially methanol extract could be characterized as a very good starting plant material for the formulation of products intended for various branches of the food and pharmaceutical industry.


Subject(s)
Acetates , Alkaloids , Chelidonium , Humans , Plant Extracts/chemistry , Chelidonium majus , Methanol , HEK293 Cells , Molecular Structure , Alkaloids/pharmacology , Alkaloids/chemistry , Solvents/chemistry , Antioxidants , Water , Chelidonium/chemistry
8.
J Am Chem Soc ; 146(8): 5173-5185, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38358388

ABSTRACT

Aqueous redox flow batteries (RFBs) are attractive candidates for low-cost, grid-scale storage of energy from renewable sources. Quinoxaline derivatives represent a promising but underexplored class of charge-storing materials on account of poor chemical stability in prior studies (with capacity fade rates >20%/day). Here, we establish that 2,3-dimethylquinoxaline-6-carboxylic acid (DMeQUIC) is vulnerable to tautomerization in its reduced form under alkaline conditions. We obtain kinetic rate constants for tautomerization by applying Bayesian inference to ultraviolet-visible spectroscopic data from operating flow cells and show that these rate constants quantitatively account for capacity fade measured in cycled cells. We use density functional theory (DFT) modeling to identify structural and chemical predictors of tautomerization resistance and demonstrate that they qualitatively explain stability trends for several commercially available and synthesized derivatives. Among these, quinoxaline-2-carboxylic acid shows a dramatic increase in stability over DMeQUIC and does not exhibit capacity fade in mixed symmetric cell cycling. The molecular design principles identified in this work set the stage for further development of quinoxalines in practical, aqueous organic RFBs.

9.
ACS Appl Mater Interfaces ; 16(6): 7014-7025, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38308595

ABSTRACT

Developing highly active and stable electrocatalysts for the oxygen evolution reaction (OER) is key to improving the efficiency and practical application of various sustainable energy technologies including water electrolysis, CO2 reduction, and metal air batteries. Here, we use evaporation-induced self-assembly (EISA) to synthesize highly porous fluorite nanocatalysts with a high surface area. In this study, we demonstrate that a 50% rare-earth cation substitution for Ce in the CeO2 fluorite lattice improves the OER activity and stability by introducing oxygen vacancies into the host lattice, which results in a decrease in the adsorption energy of the OH* intermediate in the OER. Among the binary fluorite compositions investigated, Nd2Ce2O7 is shown to display the lowest OER overpotential of 243 mV, achieved at a current density of 10 mA cm-2, and excellent cycling stability in an alkaline medium. Importantly, we demonstrate that rare-earth oxide OER electrocatalysts with high activity and stability can be achieved using the EISA synthesis route without the incorporation of transition and noble metals.

10.
Front Pharmacol ; 15: 1333865, 2024.
Article in English | MEDLINE | ID: mdl-38352148

ABSTRACT

The present study was designed to evaluate the chemical composition, antioxidant, enzyme inhibition and cytotoxic properties of different extracts from aerial parts of V. diversifolium (family Scrophulariaceae), a plant that is native to Lebanon, Syria and Turkey. Six extracts, namely, hexane, dichloromethane (DCM), ethyl acetate (EtOAc), ethanol (EtOH), 70% EtOH, and water (aqueous) were prepared by maceration. The EtOH extract was predominated by the presence of rutin (4280.20 µg g-1) and p-coumaric acid (3044.01 µg g-1) while the highest accumulation of kaempferol-3-glucoside (1537.38 µg g-1), caffeic acid (130.13 µg g-1) and 4-hydroxy benzoic acid (465.93 µg g-1) was recorded in the 70% EtOH, aqueous, and EtOAc extracts, respectively. The EtOH (46.86 mg TE/g) and 70% EtOH (46.33 mg TE/g) extracts displayed the highest DPPH radical scavenging result. Both these extracts, along with the aqueous one, exerted the highest ABTS radical scavenging result (73.03-73.56 mg TE/g). The EtOH and 70% EtOH extracts revealed the most potent anti-AChE (2.66 and 2.64 mg GALAE/g) and anti-glucosidase (1.07 and 1.09 mmol ACAE/g) activities. The aqueous extract was the most efficacious in inhibiting the proliferation of prostate cancer (DU-145) cells with an IC50 of 8.71 µg/mL and a Selectivity Index of 3.7. In conclusion, this study appraised the use of V. diversifolium aerial parts as a potential therapeutic source for future development of phytopharmaceuticals that target specific oxidative stress-linked diseases including diabetes, cancer, cardiovascular disease, and Alzheimer's disease among others.

11.
Heliyon ; 10(1): e23092, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38187329

ABSTRACT

The current study details the creation of synthetic hydroxyapatite (HAp) using a combination of catfish and bovine bones (C&B). This is done to design the optimum processing parameters and consolidate instructional strategies to develop HAp scaffolds for biomedical engineering. The HAp produced from the novel mix of the biogenic materials (C&B) was through calcination and supported with the sol-gel technique, sintering, and low-cold compaction pressure. The ideal preparation conditions were identified with the aid of the Box-Behnken statistical design in response surface methodology. To understand the physicochemical and mechanical properties of the formulation, analytical studies on the synthesized HAp were carried out. To establish a substantial relation between the physicomechanical properties of the produced HAp scaffolds, three parameters- sintering temperature, compaction loads, and holding times were used. In the evaluation, the sintering temperature was found to have the greatest impact on the material's physicomechanical properties, with compressive strength (13 MPa), porosity (49.45 %), and elastic modulus (2.216 GPa) being the most enhanced properties in that order. The physicomechanical characteristics of the HAp scaffolds were at their optimal at 900 °C, 1 h 18 min of holding time, and 311.73 Pa of compaction pressure. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) results showed that powders with a dominant HAp phase were produced at all runs, including the optimum run. Therefore, using a computationally effective methodology that is helpful for novelties in biomedical engineering education, this study demonstrates the optimal process for the synthesis of a novel matrix bone-derived HAp, showing the most significant relations liable for manufacturing medically suitable HAp scaffolds from the mixture of bovine and catfish bones.

12.
J Biomol Struct Dyn ; : 1-21, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38288952

ABSTRACT

Phytolacca americana L. is of great interest as a traditional additive in various folk remedies in several countries, including Turkey. We aimed to determine the chemical profile (assisted by high-Performance liquid chromatography-electrospray ionization-tandem mass apectrometry (HPLC-ESI-MS/MS) experiments of three extracts obtained by different polarity solvents viz. ethyl acetate (to extract semipolar compounds), methanol and water (to extract highly polar metabolites) from P. americana leaves. Their anti-diabetic effects were investigated in vitro by assessing their inhibition toα-amylase and α-glucosidase. Assessment of the neuroprotective potential of the three extracts was carried out against acetyl-(AChE) and butyryl-(BChE) cholinesterase enzymes. HPLC-ESI-MS/MS experiments showed a total of 17 chromatographic peaks primarily classified to six flavonoids, two saponins, and six fatty acids. Antioxidant assays revealed remarkable activity for the ethyl acetate and methanol extracts. The BChE inhibition was considerably more significant (4.08 mg galantamine equivalent (GALAE)/g) for the ethyl acetate extract, whereas the methanol extract had good inhibitory efficacy for AChE (2.05 mg GALAE/g). Through network pharmacology, the compounds' mechanism of action of targeted key gene in their associated diseases were identified. The hubb gene signal transducer and activator of transcription 3 (STAT3) and tumour necrosis factor (TNFα) where the P. americana compound's site of action in inflammation bowel disease. The results offer possibilities for the prospective application of P. americana in metabolic regulation, blood glucose control, and as a source of bioactive compounds with cholinesterase enzyme inhibitory characteristics which could be of relevance in the cosmetic or pharmaceutical industry for combating melanogenesis.Communicated by Ramaswamy H. Sarma.

13.
Life Sci ; 338: 122395, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38181853

ABSTRACT

Histone deacetylase 6 (HDAC6) contributes to cancer metastasis in several cancers, including triple-negative breast cancer (TNBC)-the most lethal form that lacks effective therapy. Although several efforts have been invested to develop selective HDAC6 inhibitors, none have been approved by the FDA. Toward this goal, existing computational studies used smaller compound libraries and shorter MD simulations. Here, we conducted a structure-based virtual screening of ZINC "Druglike" library containing 17,900,742 compounds using a Glide virtual screening protocol comprising various filters with increasing accuracy. The top 20 hits were subjected to molecular dynamics simulation, MM-GBSA binding energy calculations, and further ADMET prediction. Furthermore, enzyme inhibition assay and cell viability assay were performed on six available compounds from the identified hits. C4 (ZINC000077541942) with a good profile of predicted drug properties was found to inhibit HDAC6 (IC50: 4.7 ± 11.6 µM) with comparative affinity to that of the known HDAC6 selective inhibitor Tubacin (TA) in our experiments. C4 also demonstrated cytotoxic effects against triple-negative breast cancer (TNBC) cell line MDA-MB-231 with EC50 of 40.6 ± 12.7 µM comparable to that of TA (2-20 µM). Therefore, this compound, with pharmacophore features comprising a non-hydroxamic acid zinc-binding group, heteroaromatic linker, and cap group, is proposed as a novel HDAC6 inhibitor.


Subject(s)
Molecular Dynamics Simulation , Triple Negative Breast Neoplasms , Humans , Cell Survival , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/chemistry , Molecular Docking Simulation , Triple Negative Breast Neoplasms/drug therapy , Zinc
14.
Arch Pharm (Weinheim) ; 357(2): e2300528, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37974540

ABSTRACT

The genus Stachys L., one of the largest genera of the Lamiaceae family, is highly represented in Turkey. This study was conducted to determine the bio-pharmaceutical potential and phenolic contents of six different extracts from aerial parts of Stachys tundjeliensis. The obtained results showed that the ethanol extract exhibited the highest antioxidant activity in the antioxidant assays. Meanwhile, the ethanol extract displayed strong inhibitory activity against α-tyrosinase, the dichloromethane extract exhibited potent inhibition against butyrylcholinesterase, and the n-hexane extract against α-amylase. Based on ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry analysis, more than 90 secondary metabolites, including hydroxybenzoic acid, hydroxycinnamic acid, and their glycosides, acylquinic acids, phenylethanoid glycosides, and various flavonoids were identified or tentatively annotated in the studied S. tundjeliensis extracts. It was observed that the application of S. tundjeliensis eliminated H2 O2 -induced oxidative stress. It was determined that protein levels of phospho-nuclear factor kappa B (NF-κB), receptor for advanced glycation endproducts, and activator protein-1, which are activated in the nucleus, decreased, and the synthesis of matrix metalloproteinase (MMP)-2 and MMP-9 also decreased to basal levels. Overall, these findings suggest that S. tundjeliensis contains diverse bioactive compounds for the development of nutraceuticals or functional foods with potent biological properties.


Subject(s)
Stachys , Stachys/chemistry , Plant Extracts/chemistry , Butyrylcholinesterase , Receptor for Advanced Glycation End Products , Structure-Activity Relationship , Antioxidants/pharmacology , Antioxidants/chemistry , Glycosides , Ethanol
15.
J Sep Sci ; 47(1): e2300678, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37994215

ABSTRACT

Hippomarathrum scabrum L. is an endemic medicinal plant in Turkey; however, there have been few studies investigating the phytochemistry and biological properties of these plants has not been investigated. The aim of this work is to determine the chemical composition of different extracts (extracts obtained by using supercritical carbon dioxide extraction, accelerated solvent extraction, homogenizer-assisted extraction, microwave-assisted extraction, and ultrasound-assisted extraction from Hippomarathrum scabrum L., and evaluate their biological properties. The analysis revealed that 5-O-caffeoylquinic acid, rutin, and isorhamnetin 3-O-rutinoside were the main bioactive compounds. The extract obtained by accelerated extraction contains the highest concentration of 5-O-Caffeoylquinic acid (7616.74 ± 63.09 mg/kg dry extract) followed by the extract obtained by homogenizer-assisted extraction (6682.53 ± 13.04 mg/kg dry extract). In antioxidant tests, all extracts expressed significant antioxidant activity. Also, cytotoxic and anticancer effects of these plant extracts were detected in the human prostate cancer cell line. Intrinsic apoptotic genes were up-regulated and anti-apoptotic genes were down-regulated in human prostate cancer cells after inhibition concentration dose treatment. The findings are promising, and suggest the use of these plant extracts could be used as natural sources with different biological activities, as well as anticancer agents.


Subject(s)
Antioxidants , Chlorogenic Acid/analogs & derivatives , Prostatic Neoplasms , Quinic Acid/analogs & derivatives , Male , Humans , Antioxidants/analysis , Plant Extracts/chemistry , Plant Components, Aerial/chemistry
16.
ACS Omega ; 8(45): 42511-42521, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38024777

ABSTRACT

Hibiscus sabdariffa L. (Family: Malvaceae) is believed to be domesticated by the people of western Sudan sometime before 4000 BC for their nutritional and medicinal properties. This study aimed to investigate the chemical profile, antioxidant activity, and enzyme inhibition property of extracts from red roselle (RR) and white roselle (WR) varieties grown in Sudan. Three aqueous extracts obtained by maceration, infusion, and decoction, in addition to the methanolic one, were prepared from the two roselle varieties. Results showed that the highest total phenolic and flavonoid contents of RR were obtained from the extracts prepared by infusion (28.40 mg GAE/g) and decoction (7.94 mg RE/g) respectively, while those from the WR were recorded from the methanolic extract (49.59 mg GAE/g and 5.81 mg RE/g respectively). Extracts of RR were mainly characterized by high accumulation of chlorogenic acid (6502.34-9634.96 mg kg-1), neochlorogenic acid (937.57-8949.61 mg kg-1), and gallic acid (190-4573.55 mg kg-1). On the other hand, neochlorogenic acid (1777.05-6946.39 mg kg-1) and rutin (439.29-2806.01 mg kg-1) were the dominant compounds in WR. All extracts from RR had significant (p < 0.05) higher antioxidant activity than their respective WR except in their metal chelating power, where the methanolic extract of the latter showed the highest activity (3.87 mg EDTAE/g). RR extracts prepared by infusion recorded the highest antioxidant values (35.09, 52.17, 65.62, and 44.92 mg TE/g) in the DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), CUPRAC (cupric ion reducing antioxidant capacity), and FRAP (ferric reducing antioxidant power) assays, respectively. All aqueous extracts from the WR exerted significant (p < 0.05) acetylcholinesterase (AChE) inhibitory activity (3.42-4.77 mg GALAE/g; GALAE = galantamine equivalents), while only one extract, obtained by maceration, from RR exerted AChE inhibitory activity (4.79 mg GALAE/g). All extracts of the RR showed relatively higher BChE (butyrylcholinesterase) inhibitory activity (3.71-4.23 mg GALAE/g) than the WR ones. Methanolic extracts of the two roselle varieties displayed the highest Tyr (tyrosinase) inhibitory activity (RR = 48.25 mg KAE/g; WR = 42.71 mg KAE/g). The methanolic extract of RR exhibited the highest amylase (0.59 mmol ACAE/g) and glucosidase (1.46 mmol ACAE/g) inhibitory activity. Molecular docking analysis showed that delphinidin 3,5-diglucoside, rutin, isoquercitrin, hyperoside, and chlorogenic acid exerted the most promising enzyme inhibitory effect. In conclusion, these findings indicated that the chemical profiles and biological activity of roselle varied according to the variety, extraction solvent, and technique used. These two roselle varieties can serve as a valuable source for the development of multiple formulations in food, pharmaceutical, and cosmetic industries.

17.
Food Chem Toxicol ; 181: 114064, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37793470

ABSTRACT

In this context, phytochemicals were extracted from Ranunculus constantinopolitanus using ethyl acetate (EA), ethanol, ethanol/water (70%), and water solvent. The analysis encompassed quantification of total phenolic and flavonoid content using spectrophotometric assays, chemical profiling via high performance liquid chromatography-mass spectrometry/mass spectrometry (HPLC-MS/MS) for the extracts, and assessment of antioxidant activity via 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), Cupric reducing antioxidant capacity (CUPRAC), ferric reducing antioxidant power (FRAP), metal chelating (MCA), and phosphomolybdenum (PBD) assays. Moreover, antimicrobial activity was assessed against four different bacterial strains, as well as various yeasts. Enzyme inhibitory activities were evaluated against five types of enzymes. Additionally, the extracts were examined for their anticancer and protective effects on several cancer cell lines and the human normal cell line. All of the extracts exhibited significant levels of ferulic acid, kaempferol, and caffeic acid. All tested extracts demonstrated antimicrobial activity, with Escherichia coli and Pseudomonas aeruginosa being most sensitive to EA and ethanol extracts. Molecular docking studies revealed that kaempferol-3-O-glucoside strong interactions with AChE, BChE and tyrosinase. In addition, network pharmacology showed an association between gastric cancer and kaempferol-3-O-glucoside. Based on the results, R. constantinopolitanus can be a potential reservoir of bioactive compounds for future bioproduct innovation and pharmaceutical industries.


Subject(s)
Anti-Infective Agents , Ranunculus , Humans , Antioxidants/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Tandem Mass Spectrometry , Molecular Docking Simulation , Water , Ethanol , Anti-Infective Agents/pharmacology , Anti-Infective Agents/analysis
18.
JMIRx Med ; 4: e29587, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37855218

ABSTRACT

Background: The COVID-19 pandemic caused by SARS-CoV-2 is causing ongoing human and socioeconomic losses. Objective: To know how far the virus has spread in Niger State, Nigeria, a pilot study was carried out to determine the SARS-CoV-2 seroprevalence, patterns, dynamics, and risk factors in the state. Methods: A cross-sectional study design and clustered, stratified random sampling strategy were used to select 185 test participants across the state. SARS-CoV-2 IgG and IgM rapid test kits (colloidal gold immunochromatography lateral flow system) were used to determine the presence or absence of antibodies to the virus in the blood of sampled participants across Niger State from June 26 to 30, 2020. The test kits were validated using the blood samples of some of the Nigeria Center for Disease Control-confirmed positive and negative COVID-19 cases in the state. SARS-CoV-2 IgG and IgM test results were entered into the Epi Info questionnaire administered simultaneously with each test. Epi Info was then used to calculate the arithmetic mean and percentage, odds ratio, χ2 statistic, and regression at a 95% CI of the data generated. Results: The seroprevalence of SARS-CoV-2 in Niger State was found to be 25.4% (47/185) and 2.2% (4/185) for the positive IgG and IgM results, respectively. Seroprevalence among age groups, genders, and occupations varied widely. The COVID-19 asymptomatic rate in the state was found to be 46.8% (22/47). The risk analyses showed that the chances of infection are almost the same for both urban and rural dwellers in the state. However, health care workers, those who experienced flulike symptoms, and those who had contact with a person who traveled out of Nigeria in the last 6 months (February to June 2020) were at double the risk of being infected with the virus. More than half (101/185, 54.6%) of the participants in this study did not practice social distancing at any time since the pandemic started. Participants' knowledge, attitudes, and practices regarding COVID-19 are also discussed. Conclusions: The observed Niger State SARS-CoV-2 seroprevalence and infection patterns meansuggest that the virus has widely spread, far more SARS-CoV-2 infections have occurred than the reported cases, and there is a high asymptomatic COVID-19 rate across the state.

19.
Arch Pharm (Weinheim) ; 356(12): e2300444, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37754205

ABSTRACT

The chemical composition as well as antioxidant, antiproliferative, and enzyme inhibition activities of extracts from aerial parts of Thymus leucostomus H ausskn. & V elen. obtained with hexane, methanol, and water were evaluated. Results showed that the methanol extract had significantly (p < 0.05) the highest total phenolic content (TPC; 107.80 mg GAE/g) and total flavonoids content (TFC; 25.21 mg RE/g) followed by the aqueous extract (102.72 mg GAE/g and 20.88 mg RE/g, respectively). LC-MS/MS-guided profiling of the three extracts revealed that rosmarinic acid (34.8%), hesperetin (42.9%), and linoleic acid (18%) were the dominant compounds in the methanol, aqueous and hexane extracts, respectively. GC-MS analysis of the hexane extract showed that É£-sitosterol (29.9%) was the major constituent. The methanol extract displayed significantly (p < 0.05) the highest Cu++ , Fe+++ , and Mo(VI) ions scavenging and reducing properties while the aqueous extract exerted significantly (p < 0.05) the highest metal chelating power (42.51 mg EDTAE/g). Both the hexane and methanol extracts effectively inhibited the acetylcholinesterase enzyme (2.63 and 2.65 mg GALAE/g, respectively) while the former extract exerted significantly (p < 0.05) the highest butyrylcholinesterase (2.32 mg GALAE/g), tyrosinase (19.73 mg KAE/g), and amylase (1.16 mmol ACAE/g) inhibition capacity. The aqueous extract exhibited the best glucosidase inhibition property (0.49 mmol ACAE/g). The methanol and hexane extracts exerted a higher cytotoxic effect on HT-29 (IC50 : 8.12 µg/mL) and HeLa (IC50 = 8.08 µg/mL) cells, respectively. In conclusion, these results provide valuable insight into the potential use of T. leucostomus bioactive extracts in different pharmaceutical applications.


Subject(s)
Antioxidants , Hexanes , Antioxidants/pharmacology , Antioxidants/chemistry , Chromatography, Liquid , Gas Chromatography-Mass Spectrometry , Hexanes/analysis , Methanol/analysis , Butyrylcholinesterase , Acetylcholinesterase , Tandem Mass Spectrometry , Plant Extracts/chemistry , Structure-Activity Relationship
20.
Mol Cell Biochem ; 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37594629

ABSTRACT

Looking at the development status of Nigeria and other developing nations, most low-income and rural households often use coal as a source of energy which necessitates its trade very close to the communities. Moreover, the effects of exposure to coal mining activities are rarely explored or yet to be studied, not to mention the numerous street coal vendors in Nigeria. This study investigated the oxidative stress levels in serum and urine through the biomarker 8-OHdG and DNA damage via single cell gel electrophoresis (alkaline comet assay). Blood and urine levels of 8-OHdG from 130 coal vendors and 130 population-based controls were determined by ELISA. Alkaline comet assay was also performed on white blood cells for DNA damage. The average values of 8-OHdG in serum and urine of coal vendors were 22.82 and 16.03 ng/ml respectively, which were significantly greater than those detected in controls (p < 0.001; 15.46 and 10.40 ng/ml of 8-OHdG in serum and urine respectively). The average tail length, % DNA in tail and olive tail moment were 25.06 µm, 18.71% and 4.42 respectively for coal vendors. However, for controls, the average values were 4.72 µm, 3.63% and 1.50 for tail length, % DNA in tail and olive tail moment respectively which were much lower than coal vendors (p < 0.001). Therefore, prolonged exposure to coal dusts could lead to higher serum and urinary 8-OHdG and significant DNA damage in coal vendors observed in tail length, % DNA in tail, and olive tail moment by single cell gel electrophoresis. It is therefore established that coal vendors exhibit a huge risk from oxidative stress and assessment of 8-OHdG with single cell gel electrophoresis has proven to be a feasible tool as biomarkers of DNA damage.

SELECTION OF CITATIONS
SEARCH DETAIL
...