Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38592437

ABSTRACT

Oncogenic microRNA (miRNA), especially miRNA-21 upregulation in triple-negative breast cancer (TNBC), suggests a new class of therapeutic targets. In this study, we aimed to create GE11 peptide-conjugated small interfering RNA-loaded chitosan nanoparticles (GE11-siRNA-CSNPs) for the targeting of EGFR overexpressed TNBC and selectively inhibit miRNA-21 expression. A variety of in-silico and in vitro cellular and molecular studies were conducted to investigate the binding affinities of specific targets used as well as the anticancer efficacies and mechanisms of GE11-siRNA-CSNPs in TNBC cells. An in-silico assessment reveals a distinct binding affinity of miRNA-21 with siRNA as well as between the extracellular domain of EGFR and synthesized peptides. Notably, the in vitro results showed that GE11-siRNA-CSNPs were revealed to have better cytotoxicity against TNBC cells. It significantly inhibits miRNA-21 expression, cell migration, and colony formation. The results also indicated that GE11-siRNA-CSNPs impeded cell cycle progression. It induces cell death by reducing the expression of the antiapoptotic gene Bcl-2 and increasing the expression of the proapoptotic genes Bax, Caspase 3, and Caspase 9. Additionally, the docking analysis and immunoblot investigations verified that GE1-siRNA-CSNPs, which specifically target TNBC cells and suppress miRNA-21, can prevent the effects of miRNA-21 on the proliferation of TNBC cells via controlling EGFR and subsequently inhibiting the PI3K/AKT and ERK1/2 signaling axis. The GE11-siRNA-CSNPs design, which specifically targets TNBC cells, offers a novel approach for the treatment of breast cancer with improved effectiveness. This study suggests that GE11-siRNA-CSNPs could be a promising candidate for further assessment as an additional strategy in the treatment of TNBC.

2.
Sci Rep ; 14(1): 2433, 2024 01 29.
Article in English | MEDLINE | ID: mdl-38286826

ABSTRACT

The present work aimed to assess the potential effect of sericin/propolis/fluorouracil nanoformula against colorectal cancer (CRC) (the fourth most common cause of cancer-related mortalities). A novel anti-cancerous formula of the synthesized sericin/propolis nanoparticles was developed and tested both in vitro (using Caco-2 cell line) and in vivo (in experimentally induced colorectal cancer animal models). The combination index of the prepared nanoformula proved that the combination between sericin/propolis nanoparticles and 5-fluorouracil demonstrated the highest synergistic effect (0.86), with dose reduction index (DRI) of the chemotherapeutic drug reaching 1.49. The mechanism of action of the prepared nanoformula revealed that it acts through the inhibition of the PI3K/AKT/mTOR signaling pathway and consequently inhibiting cancerous cells proliferation. Treatment and prophylactic studies of both sericin and propolis showed increased TBARS (Thiobarbituric Acid Reactive Substance) formation, downregulated BCL2 (B-cell lymphoma 2) and activated BAX, Caspase 9 and Caspase 3 expression. The prepared nanoformula decreased the ROS (Reactive Oxygen Species) production in vivo owing to PI3K/AKT/mTOR pathway inhibition and FOXO-1 (Forkhead Box O1) activation that resulted in autophagy/apoptosis processes stimulation. The potent anticancer effect of the prepared nanoformula was further emphasized through the in vivo histopathological studies of experimentally induced tumors. The newly formulated sericin/propolis/fluorouracil nanoparticles exhibited clear-cut cytotoxic effects toward tumor cells with provided evidence for the prophylactic effect.


Subject(s)
Colorectal Neoplasms , Propolis , Sericins , Humans , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Propolis/pharmacology , Sericins/pharmacology , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Caco-2 Cells , TOR Serine-Threonine Kinases/metabolism , Apoptosis , Colorectal Neoplasms/pathology , Cell Proliferation , Cell Line, Tumor
3.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 873-888, 2024 02.
Article in English | MEDLINE | ID: mdl-37522915

ABSTRACT

Vascular calcification (VC) is a major risk factor for cardiovascular events. A mutual interplay between inflammation, oxidative stress, apoptosis, and autophagy is implicated in its development. Herein, we aimed to evaluate the potential protective effects of canagliflozin in a vitamin D3 plus nicotine (VDN) model of VC, and to explore potential mechanisms. VC was induced by VDN in adult male Wistar rats on day one. Then, rats were randomly assigned into three groups to receive canagliflozin (10 mg or 20 mg/kg/day) or its vehicle for 4 weeks. Age-matched normal rats served as a control group. After euthanization, aorta and kidneys were harvested for biochemical and histopathological evaluation of calcification. Aortic markers of oxidative stress, alkaline phosphatase (ALP) activity, runt-related transcription factor (Runx2) and bone morphogenic protein-2 (BMP-2) levels were determined. Additionally, the protein expression of autophagic markers, LC3 and p62, and adenosine monophosphate activated protein kinase (AMPK) were also assessed in aortic homogenates. Canagliflozin dose-dependently improved renal function, enhanced the antioxidant capacity of aortic tissues and reduced calcium deposition in rat aortas and kidneys. Both doses of canagliflozin attenuated ALP and osteogenic markers while augmented the expression of autophagic markers and AMPK. Histopathological examination of aortas and kidneys by H&E and Von Kossa stain further support the beneficial effect of canagliflozin. Canagliflozin could alleviate VDN-induced vascular calcification, in a dose dependent manner, via its antioxidant effect and modulation of autophagy. Further studies are needed to verify whether this effect is a member or a class effect.


Subject(s)
Cholecalciferol , Vascular Calcification , Rats , Male , Animals , Cholecalciferol/pharmacology , Nicotine/adverse effects , Canagliflozin/pharmacology , Canagliflozin/therapeutic use , AMP-Activated Protein Kinases , Rats, Sprague-Dawley , Rats, Wistar , Vascular Calcification/chemically induced , Vascular Calcification/drug therapy , Vascular Calcification/prevention & control , Autophagy
4.
Inflammopharmacology ; 32(1): 763-775, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38041753

ABSTRACT

Hepatic schistosomiasis is a prevalent form of chronic liver disease that drastically affects human health. Nevertheless, an antifibrotic drug that could suppress the development of hepatic fibrosis does not exist yet. The current study aimed to evaluate the effect of resveratrol, a natural polyphenol with multiple biological activities, on Schistosoma mansoni (S. mansoni)-induced hepatic fibrosis and delineate the underlying molecular mechanism. Swiss male albino mice were randomly assigned into infected and non-infected groups. Hepatic schistosomiasis infection was induced via exposure to S. mansoni cercariae. 6 weeks later, resveratrol was administrated either as 20 mg/kg/day or 100 mg/kg/day for 4 weeks to two infected groups. Another group received vehicle and served as infected control group. At the end of the study, portal hemodynamic, biochemical, and histopathological evaluation of liver tissues were conducted. Remarkably, resveratrol significantly reduced portal pressure, portal and mesenteric flow in a dose-dependent manner. It improved several key features of hepatic injury as evidenced biochemically by a significant reduction of bilirubin and liver enzymes, and histologically by amelioration of the granulomatous and inflammatory reactions. In line, resveratrol reduced the expression of pro-inflammatory markers; TNF-α, IL-1ß and MCP-1 mRNA, together with fibrotic markers; collagen-1, TGF-ß1 and α-SMA. Moreover, resveratrol restored SIRT1/NF-κB balance in hepatic tissues which is the main switch-off control for all the fibrotic and inflammatory mechanisms. Taken together, it can be inferred that resveratrol possesses a possible anti-fibrotic effect that can halt the progression of hepatic schistosomiasis via targeting SIRT1/ NF-κB signaling.


Subject(s)
Schistosoma mansoni , Schistosomiasis , Mice , Animals , Male , Humans , Schistosoma mansoni/metabolism , NF-kappa B/metabolism , Resveratrol/pharmacology , Sirtuin 1 , Liver Cirrhosis/drug therapy
5.
J Pharm Pharmacol ; 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37992248

ABSTRACT

OBJECTIVES: To investigate the chemical composition of the alcoholic extract from creeping juniper leaves using HPLC-MS/MS and to elucidate its potential anti-inflammatory mechanism through network-based pharmacology analysis to collectively enable a systematic exploration of the chemical composition, mechanism of action, and therapeutic potential of the alcoholic extract from creeping juniper leaves, providing valuable insights into its suitability as an anti-inflammatory agent. METHODS: Chemical profiling of the alcoholic extract of creeping juniper leaves using HPLC-MS/MS and revealing its anti-inflammatory mechanism using network-based pharmacology. Further, isolation of some of the identified biomarkers, assessment of their ex-vivo anti-inflammatory activity, and determination of their binding to pro-inflammatory cytokines using molecular docking and dynamics. KEY FINDINGS: Thirty-seven compounds were annotated and forwarded to network pharmacology analysis which revealed that the highest interactions were exhibited by quercetin, cosmosiin, myricetin, amentoflavone, hyperoside, isorhamnetin, and quercitrin whereas the most enriched inflammatory targets were IL-2, PGF, VEGFA, and TNFs. PI3K-Akt signaling pathway, arachidonic acid metabolism, and MAPK signaling pathway were found to be the most enriched ones. Six hit compounds were isolated and identified as hyperoside, quercetrin, cupressuflavone, hinokiflavone, amentoflavone, and quercetin. The isolated compounds showed strong anti-inflammatory activity against TNF-α, IL-6, and IL-1ß, and molecular docking and dynamics simulation showed that quercetin, quercitrin, and hyperoside had the least binding energy with TNF-α, IL-6, and IL-1B, respectively. CONCLUSIONS: Creeping juniper may reduce inflammation based on the suggested multi-compounds and multi-pathways, and that provided the basis for creeping juniper use as a potential anti-inflammatory drug.

6.
Int J Mol Sci ; 24(18)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37762060

ABSTRACT

Type 2 diabetes (T2D) is a chronic metabolic condition associated with obesity, oxidative stress-mediated inflammation, apoptosis, and impaired insulin signaling. The utilization of phytochemical therapy generated from plants has emerged as a promising approach for the treatment of diabetes and its complications. Kiwifruit is recognized for its substantial content of antioxidative phenolics. Therefore, this work aimed to examine the effect of Actinidia deliciosa (kiwi fruit) on hepatorenal damage in a high-fat diet (HFD) and streptozotocin (STZ)-induced T2D in rats using in vivo and in silico analyses. An increase in hepatic and renal lipid peroxidation was observed in diabetic rats accompanied by a decrease in antioxidant status. Furthermore, it is important to highlight that there were observable inflammatory and apoptotic responses in the hepatic and renal organs of rats with diabetes, along with a dysregulation of the phosphorylation levels of mammalian target of rapamycin (mTOR), protein kinase B (Akt), and phosphoinositide 3-kinase (PI3K) signaling proteins. However, the administration of kiwi extract to diabetic rats alleviated hepatorenal dysfunction, inflammatory processes, oxidative injury, and apoptotic events with activation of the insulin signaling pathway. Furthermore, molecular docking and dynamic simulation studies revealed quercetin, chlorogenic acid, and melezitose as components of kiwi extract that docked well with potential as effective natural products for activating the silent information regulator 1(SIRT-1) pathway. Furthermore, phenolic acids in kiwi extract, especially syringic acid, P-coumaric acid, caffeic acid, and ferulic acid, have the ability to inhibit the phosphatase and tensin homolog (PTEN) active site. In conclusion, it can be argued that kiwi extract may present a potentially beneficial adjunctive therapy approach for the treatment of diabetic hepatorenal complications.


Subject(s)
Actinidia , Diabetes Complications , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Insulins , Animals , Rats , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Antioxidants , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Mammals
7.
Biomacromolecules ; 24(5): 2149-2163, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37039769

ABSTRACT

Despite current progress in the development of targeted therapies for cancer treatment, there is a lack in convenient therapeutics for colorectal cancer (CRC). Lactoferrin nanoparticles (Lf NPs) are a promising drug delivery system in cancer therapy. However, numerous obstacles impede their oral delivery, including instability against stomach enzymes and premature uptake during passage through the small intestine. Microencapsulation of Lf NPs offer a great solution for these obstacles. It can protect Lf NPs and their drug payloads from degradation in the upper gastrointestinal tract (GIT), reduce burst drug release, and improve the release profile of the encapsulated NPs triggered by stimuli in the colon. Here, we developed nanoparticle-in-microparticle delivery systems (NIMDs) for the oral delivery of docetaxel (DTX) and atorvastatin (ATR). The NPs were obtained by dual conjugation of DTX and ATR into the Lf backbone, which was further microencapsulated into calcium-crosslinked microparticles using polysaccharide-protein hybrid copolymers. The NIMDs showed no detectable drug release in the upper GIT compared to NPs. Furthermore, sustained release of the NPs from the NIMDs in rat cecal content was observed. Moreover, the in vivo study demonstrated the superiority of the NIMDs over NPs in CRC treatment by suppressing p-AKT, p-ERK1/2, and NF-κB. This study provides the proof of concept for using NIMDs to enhance the effect of protein NPs in CRC treatment.


Subject(s)
Antineoplastic Agents , Colonic Neoplasms , Nanoparticles , Rats , Animals , Nanoconjugates , Lactoferrin , Docetaxel , Drug Delivery Systems , Colonic Neoplasms/drug therapy , Drug Carriers , Antineoplastic Agents/pharmacology
8.
PLoS One ; 18(2): e0282246, 2023.
Article in English | MEDLINE | ID: mdl-36854038

ABSTRACT

Yucca aloifolia L. fruit (Yucca or Spanish bayonet, family Asparagaceae) is recognized for its purplish red color reflecting its anthocyanin content, which has a powerful antioxidant activity. This study aimed to investigate yucca (YA) fruit extract's protective effect on Parkinson's disease (PD). In vitro study, the anti-inflammatory activity of yucca fruit extracts was explored by measuring tumor necrosis factor receptor 2 (TNF-R2) and nuclear factor kappa B (NF-KB) to choose the most effective extract. Afterward, a detailed in vivo investigation of the protective effect of the most active extract on rotenone-induced PD was performed on male albino Wister rats. First, the safety of the extract in two different doses (50 and 100 mg/kg in 0.9% saline orally) was confirmed by a toxicological study. The rats were divided into four groups: 1) normal control (NC); 2) rotenone group; and third and fourth groups received 50 and 100 mg/kg yucca extract, respectively. The neurobehavioral and locomotor activities of the rats were tested by rotarod, open field, and forced swim tests. Striatal dopamine, renal and liver functions, and oxidative stress markers were assessed. Western blot analysis of brain tissue samples was performed for p-AMPK, Wnt3a, and ß-catenin. Histopathological examination of striatal tissue samples was performed by light and electron microscopy (EM). The metabolites of the active extract were characterized using high-resolution LC-MS/MS, and the results showed the prevalence of anthocyanins, saponins, phenolics, and choline. Biochemical and histopathological tests revealed a dose-dependent improvement with oral Yucca extract. The current study suggests a possible neuroprotective effect of the acidified 50% ethanol extract (YA-C) of the edible Yucca fruit, making it a promising therapeutic target for PD.


Subject(s)
Neuroprotective Agents , Parkinson Disease , Yucca , Male , Animals , Rats , Anthocyanins , Chromatography, Liquid , Fruit , Neuroprotective Agents/pharmacology , Parkinson Disease/drug therapy , Parkinson Disease/prevention & control , Rotenone/toxicity , Tandem Mass Spectrometry , Plant Extracts/pharmacology
9.
Nutrients ; 15(2)2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36678324

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus Disease 2019 (COVID-19), poses a serious global public health threat for which there is currently no satisfactory treatment. This study examines the efficacy of Biobran/MGN-3 against SARS-CoV-2. Biobran is an arabinoxylan rice bran that has been shown to significantly inhibit the related influenza virus in geriatric subjects. Here, Biobran's anti-SARS-CoV-2 activity was assessed using MTT and plaque reduction assays, RT-PCR, ELISA techniques, and measurements of SARS-CoV-2-related gene expression and protein levels. For Vero E6 cells infected with SARS-CoV-2, Biobran reduced the viral load by 91.9% at a dose of 100 µg/mL, it reduced viral counts (PFU/mL) by 90.6% at 50 µg/mL, and it exhibited a significant selectivity index (EC50/IC50) of 22.5. In addition, Biobran at 10 µg/mL inhibited papain-like proteinase (PLpro) by 87% and ACE2 SARS-CoV-2 S-protein RBD by 90.5%, and it significantly suppressed SARS-CoV-2 gene expression, down-regulating E-gene and RdRp gene expression by 93% each at a dose of 50 µg/mL and inhibiting the E-protein by 91.3%. An in silico docking study was also performed to examine the protein-protein interaction (PPI) between SARS-CoV-2 RBD and DC-SIGN as well as between serine carboxypeptidase and papain-like protease PLpro. Serine carboxypeptidase, an active ingredient in Biobran, was found to interfere with the binding of SARS-CoV-2 to its receptor DC-SIGN on Vero cells, thus preventing the cell entry of SARS-CoV-2. In addition, it impairs the viral replication cycle by binding to PLpro. We conclude that Biobran possesses potent antiviral activity against SARS-CoV-2 in vitro and suggest that Biobran may be able to prevent SARS-CoV-2 infection. This warrants further investigation in clinical trials.


Subject(s)
COVID-19 , Oryza , Animals , Chlorocebus aethiops , Humans , Aged , SARS-CoV-2 , COVID-19/prevention & control , Vero Cells , Papain , Antiviral Agents/pharmacology , Peptide Hydrolases
10.
Oxid Med Cell Longev ; 2022: 4812993, 2022.
Article in English | MEDLINE | ID: mdl-36304965

ABSTRACT

Neuroinflammation is documented to alter brain function as a consequence of metabolic changes linked with a high-fat diet (HFD). The primary target of this study is to see how geraniol is effective in manipulating age- and diet-associated multiple toxicity and neuroinflammation in HFD-fed rats. Sixty-four adult male Wistar rats were partitioned into two groups: Group 1 (untreated normal young and aged rats) and Group 2 (HFD-fed young and aged rats) that received HFD for 16 weeks before being orally treated with geraniol or chromax for eight weeks. The results revealed a dropping in proinflammatory cytokines (TNF-α and IL-6) and leptin while boosting adiponectin in geraniol-supplemented rats. The liver, kidney, and lipid profiles were improved in geraniol-HFD-treated groups. HFD-induced brain insulin resistance decreased insulin clearance and insulin-degrading enzyme (IDE) levels significantly after geraniol supplementation. Geraniol suppressed acetylcholinesterase (AChE) activity and alleviated oxidative stress by boosting neuronal reduced glutathione (GSH), catalase (CAT), glutathione-S-transferase (GST), and superoxide dismutase (SOD) activities. It lowered malondialdehyde concentration (TBARS), nitric oxide (NO), and xanthine oxidase (XO) and restored the structural damage to the brain tissue caused by HFD. Compared with model rats, geraniol boosted learning and memory function and ameliorated the inflammation status in the brain by lowering the protein levels of IL-1ß, iNOS, NF-κBp65, and COX-2. In addition, the expression levels of inflammation-related genes (MCP-1, TNF-α, IL-6, IL-1ß, and IDO-1) were lessened significantly. Remarkably, the supplementation of geraniol reversed the oxidative and inflammation changes associated with aging. It affected the redox status of young rats. In conclusion, our results exhibit the effectiveness of dietary geraniol supplementation in modifying age-related neuroinflammation and oxidative stress in rats and triggering off the use of geraniol as a noninvasive natural compound for controlling age- and diet-associated neuronal impairments and toxicity.


Subject(s)
Diet, High-Fat , Tumor Necrosis Factor-alpha , Rats , Male , Animals , Diet, High-Fat/adverse effects , Tumor Necrosis Factor-alpha/metabolism , Acetylcholinesterase/metabolism , Interleukin-6/metabolism , Prospective Studies , Rats, Wistar , Inflammation/drug therapy , Inflammation/metabolism , Oxidative Stress
11.
Sci Rep ; 12(1): 14828, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36050423

ABSTRACT

Lantana camara L. is widely used in folk medicine for alleviation of inflammatory disorders, but studies that proved this folk use and that revealed the molecular mechanism of action in inflammation mitigation are not enough. Therefore, this study aimed to identify L. camara phytoconstituents using UPLC-MS/MS and explain their multi-level mechanism of action in inflammation alleviation using network pharmacology analysis together with molecular docking and in vitro testing. Fifty-seven phytoconstituents were identified in L. camara extract, from which the top hit compounds related to inflammation were ferulic acid, catechin gallate, myricetin and iso-ferulic acid. Whereas the most enriched inflammation related genes were PRKCA, RELA, IL2, MAPK 14 and FOS. Furthermore, the most enriched inflammation-related pathways were PI3K-Akt and MAPK signaling pathways. Molecular docking revealed that catechin gallate possessed the lowest binding energy against PRKCA, RELA and IL2, while myricetin had the most stabilized interaction against MAPK14 and FOS. In vitro cytotoxicity and anti-inflammatory testing indicated that L. camara extract is safer than piroxicam and has a strong anti-inflammatory activity comparable to it. This study is a first step in proving the folk uses of L. camara in palliating inflammatory ailments and institutes the groundwork for future clinical studies.


Subject(s)
Lantana , Metabolomics , Plant Extracts , Chromatography, High Pressure Liquid , Chromatography, Liquid , Humans , Inflammation/drug therapy , Interleukin-2 , Lantana/chemistry , Lantana/metabolism , Metabolomics/methods , Molecular Docking Simulation , Network Pharmacology , Phosphatidylinositol 3-Kinases , Plant Extracts/chemistry , Plant Extracts/pharmacology , Tandem Mass Spectrometry
12.
PLoS One ; 17(8): e0272776, 2022.
Article in English | MEDLINE | ID: mdl-35947632

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the world's most risky diseases due to the lack of clear and cost-effective therapeutic targets. Currently, the toxicity of conventional chemotherapeutic medications and the development of multidrug resistance is driving research into targeted therapies. The nano-biomedical field's potential for developing an effective therapeutic nano-sized drug delivery system is viewed as a significant pharmaceutical trend for the encapsulation and release of numerous anticancer therapies. In this regard, current research is centered on the creation of biodegradable chitosan nanoparticles (CSNPs) for the selective and sustained release of bee venom into liver cancer cells. Furthermore, surface modification with polyethylene glycol (PEG) and GE11 peptide-conjugated bee venom-CSNPs allows for the targeting of EGFR-overexpressed liver cancer cells. A series of in vitro and in vivo cellular analyses were used to investigate the antitumor effects and mechanisms of targeted bee venom-CSNPs. Targeted bee venom-CSNPs, in particular, were found to have higher cytotoxicity against HepG2 cells than SMMC-7721 cells, as well as stronger cellular uptake and a substantial reduction in cell migration, leading to improved cancer suppression. It also promotes cancer cell death in EGFR overexpressed HepG2 cells by boosting reactive oxygen species, activating mitochondria-dependent pathways, inhibiting EGFR-stimulated MEK/ERK pathway, and elevating p38-MAPK in comparison to native bee venom. In hepatocellular carcinoma (HCC)-induced mice, it has anti-cancer properties against tumor tissue. It also improved liver function and architecture without causing any noticeable toxic side effects, as well as inhibiting tumor growth by activating the apoptotic pathway. The design of this cancer-targeted nanoparticle establishes GE11-bee venom-CSNPs as a potential chemotherapeutic treatment for EGFR over-expressed malignancies. Finally, our work elucidates the molecular mechanism underlying the anticancer selectivity of targeted bee venom-CSNPs and outlines therapeutic strategies to target liver cancer.


Subject(s)
Bee Venoms , Carcinoma, Hepatocellular , Chitosan , Liver Neoplasms , Nanoparticles , Animals , Bee Venoms/pharmacology , Bee Venoms/therapeutic use , Carcinoma, Hepatocellular/pathology , Chitosan/therapeutic use , ErbB Receptors/metabolism , Liver Neoplasms/pathology , MAP Kinase Signaling System , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , Peptides/metabolism
13.
Inflammopharmacology ; 30(6): 2521-2535, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35913649

ABSTRACT

Long-term sun exposure is the commonest cause of photoaging, where mutual interplay between autophagy, oxidative stress, and apoptosis is incriminated. In combating photoaging, pharmacological approaches targeted to modulate autophagy are currently gaining more ground. This study aimed to examine repurposing metformin use in such context with or without the antioxidant coenzyme Q10 (coQ10) in ultraviolet A (UVA) irradiation-induced skin damage. The study was conducted on 70 female CD1 mice that were randomly assigned into seven groups (10/group): normal control, vehicle-treated-UVA-exposed mice, three metformin UVA-exposed groups (Topical 1 and 10%, and oral 300 mg/kg), topical coQ10 (1%)-treated mice, and combined oral metformin with topical coQ10-treated UVA-exposed mice. After UVA-exposure for 10 weeks (3 times/week), macroscopic signs of photoaging were evaluated. Mice were then euthanized, and the skin was harvested for biochemical estimation of markers for oxidative stress, inflammation, matrix breakdown, and lysosomal function. Histopathological signs of photoaging were also evaluated with immunohistochemical detection of associated changes in autophagic and apoptotic markers. Metformin, mainly by topical application, improved clinical and histologic signs of photoaging. This was associated with suppression of the elevated oxidative stress, IL-6, matrix metalloproteinase 1, and caspase, with induction of cathepsin D and subsequent change in anti-LC3 and P62 staining in skin tissue. In addition to metformin antioxidant, anti-inflammatory, and antiapoptotic activities, its anti-photoaging effect is mainly attributed to enhancing autophagic flux by inducing cathepsin D. Its protective effect is boosted by coQ10, which supports their potential use in photoaging.


Subject(s)
Metformin , Skin Aging , Skin Diseases , Female , Mice , Animals , Cathepsin D/metabolism , Cathepsin D/pharmacology , Antioxidants/pharmacology , Antioxidants/metabolism , Metformin/pharmacology , Ultraviolet Rays , Skin , Autophagy , Oxidative Stress , Apoptosis
14.
Inflammopharmacology ; 30(5): 1811-1833, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35932440

ABSTRACT

The study aims to assess the antihemolytic and antioxidant activities of geraniol versus 2, 2'-azobis, 2-amidinopropane dihydro-chloride- (AAPH-) induced oxidative damage and hemolysis to erythrocytes and its anti-inflammatory potential against lipopolysaccharide- (LPS-) induced inflammation in white blood cells (WBCs) with a focus on its integrated computational strategies against different targeted receptors participating in inflammation and coagulation. The rats' erythrocyte suspension was incubated with different geraniol concentrations. Molecular docking and simulation were used to explore the possible interaction patterns of geraniol against the potential targeted proteins for therapeutic screening. The results displayed that geraniol had a prolonged noteworthy effect on activated partial thromboplastin time and thromboplastin time. Geraniol displayed strong antioxidant effects via reduced malondialdehyde (MDA) formation and increased GSH level and SOD activity. We observed dose-dependent prevention of K+ ion leakage along with a remarkable decline of hemolysis in erythrocytes pretreated with geraniol. Geraniol 100 µg/mL and diclofenac 100 µM were nontoxic to WBCs. Geraniol significantly reduces the expression and release of cellular pro-inflammatory factors TNF-α, IL-1ß, IL-8, and nitric oxide, accompanied by a significant upregulation of gene expression of anti-inflammatory cytokine IL-10 in LPS-induced WBCs compared to nontreated cells. It demonstrates a much stronger inhibition potential than diclofenac in terms of inflammation inhibition. When comparing molecular docking and simulation data, current work showed that geraniol has a good affinity toward apoptosis signal-regulating kinase 1 (ASK1) and human P2Y12 receptors and could be developed as an antioxidant, anti-inflammatory, and anticoagulant medication in the future. Consequently, geraniol is recommended to have a defensive influence against oxidative stress, and hemolysis also could be developed as a promising anti-inflammatory, antioxidant, and anticoagulant medication.


Subject(s)
Antioxidants , Hemolysis , Acyclic Monoterpenes , Animals , Anti-Inflammatory Agents/pharmacology , Anticoagulants/pharmacology , Antioxidants/pharmacology , Chlorides , Diclofenac , Humans , Inflammation/drug therapy , Interleukin-10 , Interleukin-8 , Lipopolysaccharides/pharmacology , MAP Kinase Kinase Kinase 5 , Malondialdehyde , Molecular Docking Simulation , Nitric Oxide , Rats , Superoxide Dismutase , Thromboplastin , Tumor Necrosis Factor-alpha
15.
Andrologia ; 54(10): e14544, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35899326

ABSTRACT

The current study investigated the possible protective effects of Coenzyme Q10 (Co Q10 ) on rat model of high-fat diet (HFD) induced testicular dysfunction. Thirty male Wistar rats were allocated randomly into three groups: control, HFD, HFD + Co Q10 (75 mg/kg/day) groups. Animals were sacrificed after 3 months and epididymal sperm suspension, blood, and testes were collected for further analysis. In comparison to the untreated HFD group, the Co Q10 treated group revealed significantly increased serum testosterone, adiponectin levels, and decreased LH, FSH, and leptin levels. In addition, HFD resulted in significant increase in testicular oxidative stress (increased MDA, iNOS, NO, XO & decreased catalase, SOD, GSH) and inflammation (increased pJNK/JNK, pERK/ERK, and p-p38MAPK/MAPK), while Co Q10 was effective to ameliorate these changes. In addition, Co Q10 significantly increased sperm count, motility and viability that were markedly deteriorated by HFD. Regarding testicular ultrastructure, seminiferous tubular diameter and epithelium height were reduced in HFD group and Co Q10 significantly improved these testicular changes. Finally, a significant reduction in spermatogenic cell proliferation was detected by PCNA fluorescent expression and Co Q10 significantly reversed this change. In summary, our results indicated that Co Q10 could suppress testicular dysfunction produced by HFD. This protective effect could be attributed to its antioxidant, anti-inflammatory properties and to its effect on adipokines and spermatogenic cell proliferation. So, Co Q10 may be a promising food supplement to protect against testicular dysfunction induced by HFD.


Subject(s)
Testicular Diseases , Testis , Adipokines/metabolism , Adipokines/pharmacology , Adiponectin , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Catalase/metabolism , Diet, High-Fat/adverse effects , Follicle Stimulating Hormone/metabolism , Humans , Leptin/pharmacology , MAP Kinase Signaling System , Male , Oxidative Stress , Proliferating Cell Nuclear Antigen/metabolism , Rats , Rats, Wistar , Semen/metabolism , Superoxide Dismutase/metabolism , Testicular Diseases/metabolism , Testosterone/metabolism , Ubiquinone/pharmacology , Ubiquinone/therapeutic use
16.
Environ Sci Pollut Res Int ; 29(6): 8487-8502, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34487322

ABSTRACT

Our previous study showed that dithiophenolate (DTP) and its chitosan nanoparticles (DTP-CSNPs) have abilities to bind with DNA helixes. So in this study, their lethal doses (LD50) and therapeutic roles against rat liver injuries induced by carbon tetrachloride (CCl4) were evaluated. The study focused on the determination of the markers of oxidative stress (OS) and apoptosis and compare the results with those of cisplatin treatment. The results revealed that LD50 values of DTP and DTP-CSNPs are 2187.5 and 1462.5 mg/kg, respectively. Treatment with DPT and DPT-CSNPs after CCl4 administration reduced liver injuries, induced by CCl4, and improved liver functions and architecture through the reduction of OS and apoptosis. Where the oxidant marker was decreased with elevations of antioxidant markers. Also, there was an elevation in Bcl-2 value, with decreases in caspase-8, Bax, and Bax/Bcl-2 ratio. DPT-CSNPs treatment gave preferable results than those treated with DPT. Moreover, DTP and DPT-CSNPs treatment gave better results than cisplatin treatment. The administration of healthy rats with low doses of DTP and DTP-CSNPs for 14 days had no effect. Otherwise, the study on HepG2 cell line showed that DTP and DPT-CSNPs inhibited cell growth by arresting cells in the G2/M phase and inducing cell death. In conclusion, DTP and DTP-CSNPs have antiapoptotic and anti-oxidative stress toward hepatotoxicity induced by CCl4. Moreover, DTP and DTP-CSNPs have anticancer activity against the HepG2 cell line. Generally, DTP-CSNPs are more effective than DTP. So, they can be used in the pharmacological fields, especially DTP-CSNPs.


Subject(s)
Chemical and Drug Induced Liver Injury , Chitosan , Nanocomposites , Animals , Antioxidants , Carbon Tetrachloride/toxicity , Chemical and Drug Induced Liver Injury/drug therapy , Rats
17.
Molecules ; 26(22)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34833928

ABSTRACT

The study of diabetes mellitus (DM) patterns illustrates increasingly important facts. Most importantly, they include oxidative stress, inflammation, and cellular death. Up to now, there is a shortage of drug therapies for DM, and the discovery and the development of novel therapeutics for this disease are crucial. Medicinal plants are being used more and more as an alternative and natural cure for the disease. Consequently, the objective of this review was to examine the latest results on the effectiveness and protection of natural plants in the management of DM as adjuvant drugs for diabetes and its complex concomitant diseases.


Subject(s)
Diabetes Mellitus/drug therapy , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Animals , Diabetes Mellitus/metabolism , Humans , Insulin/metabolism , Phytotherapy/methods , Plant Extracts/chemistry
18.
Pharmaceutics ; 13(11)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34834352

ABSTRACT

Numerous epidemiological findings have repeatedly established associations between Type 2 Diabetes Mellitus (T2DM) and Alzheimer's disease. Targeting different pathways in the brain with T2DM-therapy offers a novel and appealing strategy to treat diabetes-related neuronal alterations. Therefore, here we investigated the capability of a natural compound, curcumin nanoparticle (CurNP), and a biomedical metal, zinc oxide nanoparticle (ZnONP), to alleviate hippocampal modifications in T2DM-induced rats. The diabetes model was induced in male Wistar rats by feeding a high-fat diet (HFD) for eight weeks followed by intraperitoneal injection of streptozotocin (STZ). Then model groups were treated orally with curcumin, zinc sulfate, two doses of CurNP and ZnONP, as well as metformin, for six weeks. HFD/STZ-induced rats exhibited numerous biochemical and molecular changes besides behavioral impairment. Compared with model rats, CurNP and ZnONP boosted learning and memory function, improved redox and inflammation status, lowered Bax, and upregulated Bcl2 expressions in the hippocampus. In addition, the phosphorylation level of the MAPK/ERK pathway was downregulated significantly. The expression of amyloidogenic-related genes and amyloid-beta accumulation, along with tau hyperphosphorylation, were lessened considerably. In addition, both nanoparticles significantly improved histological lesions in the hippocampus. Based on our findings, CurNP and ZnONP appear to be potential neuroprotective agents to mitigate diabetic complications-associated hippocampal toxicity.

19.
Nutrients ; 13(11)2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34836191

ABSTRACT

The potential of KDP, a lactic acid bacterial strain of Lactobacillus sakei, to enhance the production of mucosal specific immunoglobulin A (IgA) in mice and thereby enhance gut mucosal immunity was examined. KDP is composed of dead cells isolated from the Korean traditional food kimchi. Female BALB/c mice orally received 0.25 mg KDP once daily for 5 weeks and were co-administrated ovalbumin (OVA) for negative control and cholera toxin for positive control. Mice administered KDP exhibited increased secretory IgA (sIgA) contents in the small intestine, Peyer's patches, serum, colon, and lungs as examined by ELISA. KDP also significantly increased the gene expression of Bcl-6, IL-10, IL-12p40, IL-21, and STAT4. In addition, KDP acted as a potent antioxidant, as indicated by its significant inhibitory effects in the range of 16.5-59.4% for DPPH, nitric oxide, maximum total antioxidant capacity, and maximum reducing power. Finally, KDP exhibited potent antimicrobial activity as evidenced by a significant decrease in the growth of 7 samples of gram-negative and gram-positive bacteria and Candida albicans. KDP's adjuvant effect is shown to be comparable to that of cholera toxin. We conclude that KDP can significantly enhance the intestine's secretory immunity to OVA, as well as act as a potent antioxidant and antimicrobial agent. These results suggest that orally administered KDP should be studied in clinical trials for antigen-specific IgA production.


Subject(s)
Anti-Infective Agents/pharmacology , Bacterial Proteins/pharmacology , Immunity, Mucosal/drug effects , Immunoglobulin A, Secretory/drug effects , Intestinal Mucosa/immunology , Latilactobacillus sakei , Animals , Cholera Toxin/pharmacology , Female , Intestine, Small/immunology , Mice , Mice, Inbred BALB C , Ovalbumin/pharmacology
20.
Sci Rep ; 11(1): 20677, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34667196

ABSTRACT

The present study was carried out to investigate the therapeutic effect of synthesized naturally compounds, curcumin nanoparticles (CurNPs) and metal oxide, zinc oxide nanoparticles (ZnONPs) on a high-fat diet (HFD)/streptozotocin (STZ)-induced hepatic and pancreatic pathophysiology in type 2 diabetes mellitus (T2DM) via measuring AKT pathway and MAPK pathway. T2DM rats were intraperitoneally injected with a low dose of 35 mg/kg STZ after being fed by HFD for 8 weeks. Then the rats have orally received treatments for 6 weeks. HFD/STZ-induced hepatic inflammation, reflected by increased phosphorylation of p38-MAPK pathway's molecules, was significantly decreased after nanoparticle supplementation. In addition, both nanoparticles significantly alleviated the decreased phosphorylation of AKT pathway. Further, administration of ZnONPs, CurNPs, conventional curcumin, and ZnSO4 (zinc sulfate), as well as metformin, effectively counteracted diabetes-induced oxidative stress and inflammation in the internal hepatic and pancreatic tissues. Based on the results of the current study, ZnONPs and CurNPs could be explored as a therapeutic adjuvant against complications associated with T2DM. Both nanoparticles could effectively delay the progression of several complications by activating AKT pathway and down-regulating MAPK pathway. Our findings may provide an experimental basis for the application of nanoparticles in the treatment of T2DM with low toxicity.


Subject(s)
Curcumin/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/pharmacology , Nanoparticles/administration & dosage , Obesity/metabolism , Zinc Oxide/pharmacology , Animals , Antioxidants/metabolism , Blood Glucose/drug effects , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2/chemically induced , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat/adverse effects , Inflammation/metabolism , Insulin/metabolism , Insulin Resistance/physiology , Liver/drug effects , Liver/metabolism , Male , Metformin/pharmacology , Oxidative Stress/drug effects , Rats , Streptozocin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...