Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Biotechnol ; 281: 87-98, 2018 Sep 10.
Article in English | MEDLINE | ID: mdl-29928917

ABSTRACT

Various nanoflowers are synthesized as supports for different methods of enzyme immobilization; however, the activities of these immobilized enzymes are limited because of their confinement in the nanoflowers. In order to increase the performance of nanoflowers, in this study, different protein-phosphate hybrid nanostructures were successfully synthesized and further enhanced by carbon nanotubes (CNTs) under the same conditions. Only Cu3(PO4)2 complex nanostructures exhibited flower-like structures and showed excellent results after enhancement with CNTs in this framework. An esterification reaction between lauric acid and 1-dodecanol was used to test enzyme activity during immobilization, revealing that the Cu3(PO4)2/CNT/protein complex exhibited 68-fold higher activity relative to free lipase and 51-fold higher than that of Cu3(PO4)2/Burkholderia cepacia lipase hybrid nanoflowers in the absence of CNTs. All three hybrid nanostructures showed good performance and exhibited excellent reusability in resolution reactions between 1-phenylethanol and vinyl acetate. Additionally, the substrate enantiomeric excess (ees) reached 98% in only 10 min, and the corresponding Cu3(PO4)2/CNT/protein complex could be recycled eight times without obvious loss of activity. This approach involving nanoflowers enhanced with CNTs will be highly beneficial for decreasing mass-transfer resistance and providing enhanced enzyme loading along with promising potential for industrial application.


Subject(s)
Enzymes, Immobilized/chemistry , Lipase/chemistry , Nanostructures/chemistry , Phosphates/chemistry , Benzyl Alcohols/chemistry , Enzymes, Immobilized/ultrastructure , Lipase/ultrastructure , Microscopy, Electron, Scanning , Nanostructures/ultrastructure , Stereoisomerism , Vinyl Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL