Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(49): 34482-34488, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38024986

ABSTRACT

Photoelectrochemical (PEC) cells made of low-cost, chemically stable, and abundant materials are crucial for green hydrogen production. In this regard, the fabrication of porous films with high light trapping ability and a large contact area is crucial for the production of efficient PEC cells. In this report, anatase TiO2 thin films with a porous double-layered structure were successfully prepared using a conventional spin-coating deposition method. Various amounts of polystyrene spheres were used as a pore-templating agent to control the porosity of the films. A range of characterization techniques, such as scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and photoluminescence were employed to assess the morphology, structural and optical properties of prepared TiO2 films. PEC measurements revealed that prepared double-layered TiO2 thin films exhibit porosity-dependent photocatalytic activity. For example, TiO2 films with an optimized porous structure demonstrated an increase in photocurrent density by a factor of ∼2.23 (to 141.7 µA cm-2) and photoconversion efficiency improvement by a factor of ∼2.14 as compared to non-porous double-layered TiO2 reference films. Absorbance and photoluminescence analysis confirmed that improved PEC activity can be attributed to increased light absorption by the porous structure and reduced charge carrier recombination.

2.
ACS Omega ; 8(35): 31954-31961, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37692229

ABSTRACT

Noble metal nanoparticles (NPs) are important in many applications, including light trapping of photovoltaic cells, photoelectrochemical applications, etc. The present study reports the formation of silver NPs from the as-deposited silver coatings on fused silica substrates by solid-state dewetting induced by high-current intense pulsed ion beam (IPIB) irradiation. We described the effects of IPIB irradiation with different ion beam current densities and numbers of pulses on NP morphology and compared the results with conventional rapid thermal annealing (RTA). IPIB irradiation enables superfast heating (higher than 109 K/s) and cooling, providing a superfast annealing solid-state dewetting mechanism. Our results demonstrate that the sphericity of silver NPs is enhanced after IPIB irradiation relative to RTA-annealed silver NPs. Our results suggest further possibilities of shape and sphericity control of silver NPs with very fast heating/cooling annealing rates.

3.
Nanomaterials (Basel) ; 12(15)2022 Jul 31.
Article in English | MEDLINE | ID: mdl-35957071

ABSTRACT

The photoelectrochemical (PEC) activity of metal oxide photoelectrodes for water-splitting applications can be boosted in several different ways. In this study, we showed that PEC activity can be significantly improved with a double-layer (crystalline-amorphous) configuration of WO3 thin films irradiated with intense pulsed ion beams (IPIB) of a nanosecond duration. It was found that IPIB irradiation promotes the formation of crystalline and sponge-like WO3 structures on the surface. Due to an increase in the active surface and light scattering in irradiated samples, photocurrent generation increased by ~80% at 1.23 reversible hydrogen electrodes (RHE).

SELECTION OF CITATIONS
SEARCH DETAIL
...